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by
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ABSTRACT: This report is divided into five parts corresponding
roughly to five separate endeavors executed in the study.

Chapter I, entitled "'Space Applications of a Minimization

Algorithm, describes the logic minimization problem, a slightly
updated version of the extraction algorithm, a user's descrip-
tion of the IBM 7094 program MIN6, together with several ex-—
amples of use of the program in space applications. (This
paper will be submitted to the IEEE Transactions on Aerospace
& Electronic Systems c/o the Telemetry Editor, John E. Gaffney,Jr.,
18100 Frederick Pike, Gaithersburg 20760.)

Chapter II is the paper: "A Calculus and an Algorithm for
a Logic Minimization Problem Together with an Algorithmic Notation.'
This is a writeup bf the multiple-—output extraction algorithm. In
this paper the notion of singular cube and singular complex is
introduced, together with a calculus for appropriate computations,
together with a new algorithmic notation used to describe the
algorithm. A proof of the validity of the algorithm ié given.
This paper has been submitted to the IBM Journal of Research and

Development.



Chapter III is "An Axiomatic Treatment of Roth's Extrac-
tion Algorithm.” This paper presents a general axiomatic
treatment of J. Paul Roth's "extraction algorithm' for the
minimization of logical circuits. This treatment brings to-
gether the seemingly different versions of the algorithm
presented in Roth's different papers, and it provides a
general proof of the algorithm over a wide range of cost
functions. The minimization problem and the algorithm are
presented in an abstract context (i.e., by axioms and without
direct reference to any particular application such as switch-
ing circuits) and are thus in a form applicable to many
"covering problems'. Two switching theory applications of the
algorithm are sketched at the end of the paper.

Chapter IV, "A Calculus of @-objects, is a description
of a very abstract and axiomatic treatment of switching theory,
independent of set theory or any other foundational approach.
There are two basic operatiéns called catenation and ''angle-
~ bracketing”. 01, x, o are primitive objects. Relations,
functions, circuits and singular complexes are described in
terms of these operations. An algorithm is given for analyzing
acyclic logic eircuits.

A future area for research is the connection betwéen

a-objects and F-notation described in Chapter II.

Chapter V, "An APL Version of MOM the Multiple Ouput
2-Level Minimization Program'', describes an APL-implementation
of the 2-level MOM program. It follows and conforms to and is
based upon the F-notation version described in Chapter II.

Several examples of use of this program are included.



SPACE APPLICATIONS OF A MINIMIZATION ALGORITHM

by
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ABSTRACT: This paper is a detailed account of the
application of an IBM 7094 minimization program to
several design problems at NASA's Jet Propulsion
Laboratory of the California Institute of Technology.
Specifically these applications are concerned with
the design of a curve function generator for a mass
spectrometer for a proposed Mars probe and the 5
design of autonomous shift registers with linear and
nonlinear feedback, used for classification of binary
sequences and counting tasks for spacecraft scientific
data processing, The algorithm and program used
are first described, followed by a description of the
applications,



Space Applications of a Minimization Algorithm

J. P. Roth
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Introduction: The use of minimization algorithms in the

synthesis of switching systems is not a new topic but an
account in some detail of successful application of these pro-
grams to practical problems is of considerable iﬁterest.
Most of the problems discussed in this paper are concerned
with space applications at the Jet Propulsion Laboratory at
California Institute of Technology of a program MIN6 of the
extraction algorithm [RSSj although one of these was connected
with the design of the IBM 704 (using an early version MIN 4),
Other IBM applications are given elsewhere, e.g. on S/360[R65],
The problems discussed of the applications are connected
with the design of the curve function generator for a mass-
spectrometer for a proposed Mars probe and the design of
autonomous shift registers with linear and nonlinear logic
feedback, used for classification of binai'y sequences and

counting tasks for spacecraft scientific data processing,
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The IBM application used MIN 4 to simplify a code
translator, converting standard IBM six-bit BCD code to a
paper tape code of five bits, with an approximately 50%

cost reduction over the original solution,

s

1. Description of Logic Minimization Problem plus Notation,

A logic circuit of two levels is shown in the figure below,
It consists of a level of AND-blocks followed by a level of OR-
blocks., It could equally well be a level of NAND blocks fol-
lowed by a level of NOR~blocks:

13y 2 3 4 5
AND AND AND AND
1 1 |
OR OR OR
a b c
12345labc
11 1
11 11
11 11
1 1

Figure 1, A 2-Level AND/OR Circuit Together With Its
Singular Cover,
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The programs and algorithms may be interpreted for any pair
of "opposite' vertex functions, Below the circuit is a
"singular cover't which describes the behavior of the circuit;
the first row for example specifies the on-array, specifying’
that when lines 1 and 2 are }, the a-output is 1.’ ‘The absenc;a,
of symbols in the other columns iﬁdicates that the relationship
is independent of the values of the "input-variables'" 3, 4 and
5 and that, for input-lines 1 and 2 equal to 1, the other outputs,
b and ¢ are not determined, A similar interpretation is to be
made of the other rows.

This is a brief description of the singular cover notation

for describing the behavior of 2-level circuits,

2, Brief Description of Minimization Problem,

Actually, the minimization problem is more general in

that so-called "Dont!'-Care!" conditions are involved; in this
event there would be other '"cubes' adjoined to the cover: the
problem is to find a set of cubes from the '"cares' and the
'"don't-cares'' which "cover' the cares and at the same time
have a minimum "'cost', the cost being some well-defined
function of each cover, One such cost is the sum of the number
of ones and zeros used in the cover, both for their input and
output coordinates, The '"'cost" relates the cover to the func-
tional realization as in Fig. 1 and its hardware cost,

A related paper [RW68] gives an algorithm for this ”mulfiple—
output problem'" but a program for this algorithm has not yet
been made. A iarogram MIN 6 for an approximation to this
minimization problem has received considerable usage within

IBM and recently by the Jet Propulsion Laboratory of the



California Institute of Technology. It is the purpose of this
paper to describe in some detail these applications, which

have some considerable technical importance in themselves.

(MP to furnish description of JPL problems 'in capsule', ) .

The program is based on the extraction algorithm [R59]
in its original single-output form, utili;'zing the Muller-output
coding to adapt it to the several-output problem. In general
the solutions from such an encoding does not yield a minimum
as simple examples show., Indeed the program, as described
in the next section, has certain features which allow it to be
run in an approximate-minimum form (for purposes of speed
and computational feasibility). Consequently for the applica-
tions, usually in multiple~output form, a minimum is not
ordinarily obtained, but a ''sufficiently" good approximation to

a minimum is obtained,

3. The Extraction Algorithm,

The extraction algorithm is a means for finding a minimum
to the covering problem. It works for the single output case,
and is adapted in the program by means of the Muller coding
[M54], in the following way.

1. The prime cubes (prime implicants) ‘é. are computed

by the #algorithm [ERW61].

2., The extremals E (members of the core) are computed

by the #product [R58].-

3, If E is nonempty, E # 0, then E is "extracted"

from .Z' to form Z, Z = .Z: - E, and removed from

the care conditions C, C - C# E,



3.1 The '"less-than" operation is then performed to remove
cubes u which can be replaced in any minimum cover by
other cubes v, Preclsely, u is '"less-than'" v, u<v, if
cost (u) _>_ cost (v) and v covers of the remaining care

conditions, C # E, at least as much as u.

3,2 A new extraction problem is formed consisting of the
original C of care conditions diminished by the extremals E
which have been computed in 2; if C # E denotes this reduced
ensemble of care conditions, then a new set of extremals—
call them Ez—is computed according to 2, etc,. The
"solution" S is then the "sum!' of the E's so computed,
3. 3 If at any stage of the computation the '""newly computed"
ensemble of extremals "'vanishes', Ei = _6, then a branch
procedure B is invoked which forces a solution s® by on the
one hand selecting a cube z (by some elaborate process) and
treating it as if it were an extremal and on the other ''rejecting"
z (as if it were < some other cube), to obtain a solution S-E ..
That which has lower cost constitutes a minimum for the
original problem,

This ig a slightly updated version of the programmed
algorithm MIN 6, whose use and some applications fhereof is

defined below.



4. THE MIN-6 PROGRAM
4.1 Background

The MIN-6 program was written for the IBM 7094 general pur-
pose computer to determine a K-cover of L of minimum or approximate
minimum cost. K denotes a cubical complex containing the subcomplex L.
The vertices N = K - L are the unspecified Or don't care vertices. fhe
program is based on J. Paul Roth's extraction algorithm {RSQ} for single-
output Boolean functions. The multi-ou%put problem is first converted
to an imaginary single-output problem by Muller coding. The extraction
algorithm is then applied. See Section 3. The minimization of the
single output function yields the simultaneous minimization of the
Boolean functions representing the original nulti-output problem [M54}.
A K-cover of L is any collection of cubes C such that each vertex of L
is contained in some cube of C. Cost is defined as the number of diodes
required in a two-level AND-OR implementation. When censidering com-
binational logic networks utilizing large scale integrated circuits
(LSI), cost can be defined as the number of interconnections.

The MIN-6 program consists of three steps. During step 1
the input data is read and an array of prime cubes is derived. A cube
z of K is a prime cube if 8.2 = § for all i. A prime cube corrgsponds
to a prime implicant in Quine's terminology when X = L. Every K-cover
of L of minimum cost is contained in the set of prime cubes. 1In step 2
prime cukes are selected to form a K-cover of L of minimum cost. During
step 3 a solution (or several solutions of equal or near equal cost) are

written out.
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The MIN-6 options fall into two categories. These are
(theoretically) minimum-cost solutions and approximate minimumm-cost
solutions. The difference is in the performance of step 1. For
minimum-cost solutions the entire array of prime cubes is derived
by means of the ''sharp' algorithm E?Séj. For approximate minimum-
cost solutions only a portion of the prime cubes is derived fbrja
given problem by means of the ”coface" algorithm [RSQ}. In larger
problems the sharp algorithm can result in overflow in core or the
faiiure tc find a solution in a reasonable running time. Since the
coface algorithm derives many fewer prime cubes, it requires less
ruming time and has considerably less chance for overflow than the
sharp algorithm. Furthermore and more importantly, step 2 where the
selection of a subset of prime cubes is made runs much faster after
cofacing than after sharping. | )

There is no known method for predicting the running time
for either category of opticns for a given problem. If experience
with a given type of problem indicates that no more than three solu-
tions are extracted in a reasonable time by sharping, then cofacing
should be used.

4.2 The Sharp Algorithm

Given the cubes u = @y, ug, ceu)andv=s (v, v, .
Vh}’ the sharp product u # v are the vertices of u that are not in v.
The resulting set of vertices are representéd as a cube or the uﬁion of
cubecs of largest possible dimension. The coordinate representation of
a cube is an n-tupie where each component is a 0, 1, or X. The dimen-
sion of a cube is equal to the nuwber of X's (free coordinates). The

cost of a cube is equal to n minus the number of X's (i.e., the mumber
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of bound coordinates). The #-product of coordinates appears in TABLE 4-1.

Vi
.ui.\_}- __9 . _1 f -
0 =z y z
1 v z z
X 0 z

TABLE 4-1 THE #-PRODUCT OF COORDINATES
The sharp product u # v is determined from the #-product

of coordinates as follows:

u if ui # v.

i =Y for any i

z for all i

g if uy # vy

uffves=
< Z (ul, coe s Uy s T, Usigs e e e un)
i

where u. # v. = «. = 0 or 1
i i i

\

In the third case, the logical summation runs over all i where

u. # v. =0 or 1.
i i

EXAMPLE 1
a. XX # 01X = 1XX + X0X
b. X10 # XX1 = X10
c. 10X # 1XX = ¢

'The sharp product is non-cormutative and non-associative. It does
however satisfy the following distributive lew

u+v) tw=(u#w +(viw
Other properties follow from the definition:

1. u#v=pgifuly

2. u#vCu

3. (u#bv)tw=(ufwiv
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The sharp algorithm is used in MIN-6 to derive all the
prime cubes of the on or off array. Minimize on (disjunctive minimum)
and minimize off (conjunctive minimum) are MIN-6 options which fall ~
into the category of minimum-cost solutions. If the on array (input
cubes which result in a 1 output) are supplied to the computer and a
minimize on is requested, the sharp algorithm is used twice. First
the on array is sharped from the universal cube. This yields the
prime cubes of the off array. The prime cubes of the off array are
then sharped from the universal cube to obtain the prime cubes of the
on array. The double sharp routine can be avoided by giving the com-
puter the off array (on array) when requesting a minimize on (minimize
off} option.

EXAMPLE 2
Given

ABC £ (A, B, C)

000 0
001 1
010 0
011 1
100 0
101 0
110 1
111 1

To realize a minimize on solution the off array {000, 010, 100, 101}
is sharped from the universal cube XXX as follows:
(((XX # 000) # 010) # 100) # 101

1. XX # 000 = 1XX + XIX + XXl



2. (IXX + XIX + XX1) # 010 = IXX + 11X + X11 + XXI _

IXX + XX1
3. (IXX + XX1) # 100

11X + 1XI + XX1
11X + XX1

4, (11X + XX1) # 101 = 11X + OX1 + X11
The prime cubes of the on array are {11X, 0X1, X11}. Note that in
step 2 11X ¢ 1XX and X11 ¢ XX1. Similarly, in step 3, 1X1 c XX1.
Property 1 qf the sharp product can be uséd to determine whether a
cube is contained in a higher dimensional one. This corresponds to
a <-operation where the cube of lower dimension (a less than) is dis-
carded since it is contained in one of higher dimension (hence, of
lower cost).
4.3 The Coface Algorithm

Both the on and off array must be supplied to the computer
before cofacing. The dimensiﬁn of each cube in the on array is
increased as much as possible without’overlapping the off array. The
procedure is to replace each cube of the on array with a prime cube
which contains it, but does not contain any vertices of the off array.
Essentially the first bound coordinate of a given cube in the on array
is replaced by a free coordinate. The higher dimensionél cube is then
tested to see if it belongs to the K compiex. If it does, the given
cube is replaced by the higher dimensional one. This is repeated for
each of the remaining bound coordinates. The resulting cube will
always be a prime cube. In general, only a portion of all possible
prime Eubes are derived by this method and any cover selected from

these prime cubes will not be a minimum-cost cover. Historically, this

procedure was explained in terms of a succession of face and coface
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operations {RS91, hence the term cofacing was used. The cofacing
algorithm can be implemented with sharping. The off array is sharped
from a given cube in the on array after its dimension has been increménted.

The given cube will be unaltered if it does not contain any vertex of the

off array.

EXAMPLE 3
Given
ABC f (A, B, O)
000 1
001 1
010 0
011 0
100 1
101 -
110 1
111 0

The dash (-) denotes an unspecified or don't care condition. The on

and off arrays are listed as follows:

ON ARRAY OFF ARRAY
000 010
001 011
100 111
110

Tests for 0 0 0

((X00 # 101) # 011) # 111 = X00
XX0 # 010 # XXO0
= XOX

((X0X # 010) # C11) # 111
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Therefore 000 is feplaccd with X0X, a prime cubc contained in K.
4.4 Computation of Extrcmals and Less Thans

A prime cube z5 of X is termed an L-extremal [R59] if‘it con;
tains a veftex of L not contained in any other prime cube of K. The set
E of all L-extremals of K must be contained in any minimum-cost cover of
L. When K = L, E corresponds to the ''core" in Quine's terminology. The
removal of extremals reduces the number of prime cubes which must be
selected to form a cover. Let Z equal the prime cubeé‘from which a K
cover of L is to be selected. Sharping is performed to determine whether
zs is an extremal. The prime cube z; is an extremal if and only if

z; # 47 - zi} P
After identifying and storing the extremals, the remaining prime cubes
are partially ordered according to dimension. Each <-maximal (i.e.,
less than) prime cube contained in one of higher (or equal) dimension is
discarded. The remaining prime cubes are subjected to the same process
since the removal of less-thans may introduce another set of extremals.
The process for some problems continues until the remaining set of prime
cubes is empty. In this case the union of all the ordered sets of
extremals {El, EZ’ o e ey Er} is a unique minimum-cost K-cover of L.

For many problems, however, a point is reached where all of
the remaining prime cubes are maximal under the <-operation (i.e., none
are less thans) and none are extremals (i.é., each remaining vertex is
covered by more than one prime cube). When both of these conditions hold
(Kr’ Lr) is termed irreducible. K; is the complex resulting from altemately
removing ith ordered extremals E; and applying the <-operation for all

i<r-1. Lr is a subcomplex of Kr' If K =L and (K, L) is irreducible, the
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cubical complex represents a cyclic Boolean function. Whenever a
point is reached where (Kr, Lr) is irreducible, the MIN-6 proéfam
"goes into a branching mode. ’
4.5 Branching Mode

Branching starts with a selection of a cube u in Kr' First
n is treated as if it were an extremal. The <-operation is applied to
{Kr - u}. This subcover is then tested for new extremals and the
extraction algorithm continues. If no additional branch points arise,
a K-cover of L will be found which contains u. Its cost is computed
and stored. The program returns to the branch point where (Kr’ Lr) is
irreducible. Then u is treated as if it were a less than some other
cube in Kr' This subcover is then tested for new extremals and the
extraction algorithm continues. No additional branch points arise and
a K-cover of L will be found which does not contain u. * Its cost is
computed and compared with that of the solution containing u. The
lower cost solution (or either one if the costs are equal) is a minimum
cost solution.

For many problems more than one branch point appears in
searching for a minimum-cost solution. At each branch point, a 'best”
cube is selected and put into a solution buildup as an extremal. This
continues until a solution is reached. Successive branch points or
nodes may be diagrammed as end points of a branch of a tree. After a
solution and its cost is computeq and stored, the program returns to
the last branch point. The 'best" cube selected at this point is then
treated as a 1e§svthan in forming another solution in which this 'best"

cube is not included. If the cost of this solution is cheaper than (or
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the same as) the previous one, it is retained as a currently chcapest
solution {CCS). The program continues to retrace branches to a previcus
‘level of branching, return on an alternate branch, and proceed toward’a
new solution. Branch tracing is interrupted when it has been determined
that the path can only lead to a more costly solution than the CCS. A

branching tree is illustrated in Fig. IV-1.

RS

/ \
¢100 @101- A10 111

11100 o
Figure 4-1. A Min-6 Branching Tree.

The cost, branch number, branch level, and a binary sequence
which identifies the locaticn in the tree representation of branching
of every CCS is written out. The branch number of a solution refers

to the number of terminal brinu1es as read from right to left up to and
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including the CCS it identifies. Ea;h terminal is associated with a
solution. The branch level is equal to the number of bits in tﬁe binary
sequence. At each branch point a bit is added to the right of a binary
sequence. A 1 (0) is added if the "best' cube at the previous branch
point was treated as an extremal (less than). From Fig. 4-1, the solu-
tion associated with 100 has a branch number 6 and a branch level 3.
The selection of a cube when branching should be cne that:
1. minimizes the total extraction time and
2. lowers the cost at which subsequent branches can
be terminated.
A cube that yields a large number of new prime cubes for exclusion or
inclusion in a solution satisfies part 1. If this leads to a low-cost
solution at the end of the branch being traced, part 2 is satisfied.
Selection criteria is a current research problem.
MIN-6 is implemented to select a cube whose ''crown' has the
greatest dimension. The crown of a given cube is defined as the sub-
cube of the smallest dimension that contains all the "care" vertices of

the given cube.



5.  DESCRIPTIONS OF MINIMIZED DESIGNS
5.1 Feedback Shift Register Code Translator
A generalized feedback shift register (FSR) aﬁpcars in’
Fig. 5-1. The content of the izh-stage ( a two-state memory element)
at clock pulse interval (CPI) k is denoted as 3, _;- The bit being
fed back during CPI k is a Boolean function of the states of the r

stages. Hence
a = f(ak_l, Bp_gs + o o ak—r) (5.1

The state of the izh-stage at CPI k becomes the state of the (i + 1)Eh

stage at CPI k + 1.

s Tk + 1) - (4 + 1)
The initial state of the iEh-stage is represented as a_; vhere k = 0.
The FSR is in a subclass of autonomous finite state machines.
The sequence'{ak} is periodic and the length of the per;od £ is always
dependent upon the feedback function and may depend upon the initial
state of the register.

EXAMPLE 5-1

- \j
B = 31 %39 3y
where (8) denotes sum mcdulo 2 (i.e., EXCLUSIVE-OR) and (') denotes
complementation. Logical multiplication is denoted by juxtapositicn.

Successive states ay _q 8y o 3. 3 3 4 and a, are tabulated as follows:
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.k a1 2 3z .y a
0 0 0 0 0 1
1 1 0 0 0 1 ’
2 1 1 0 0 1
3 1 1 1 0 0
4 0 1 1 1 0
5 0 0 1 1 0
6 0 0 0 1 0
0 0 0 1 0 1
1 1 0 0 1 0
2 0 1 0 0 1
3 1 0 1 0 0
4 0 1 0 1 0
0 1 1
1 1

0
0 1 1 1 1 1

The feedback function decomposes the 24 states into branchless cycles
of length 1, 3, 5, and 7 as shown in the state diagram of Fig. 5-2.

States are labeled with their decimal equivalents.

FIG. 5°2 FSR STATE DIAGRAM FOR a, = a,_; 3, s ® af ,




-3-

A necessary and sufficient condition for distinct states to have

distinct successors {G-67} is that ay be of the form shown in 5.2.
a = g(ak_l, A g0 v s ak-r+1) ] A _r (5.2)

In example 5.2

3 = (g * 34 g) @y
and branchless cycles result.

The FSR has numerous application in addition to serving as
a mathematical model for random number generation, finite state machines,
and Markovian processes lG-67}. Applications include counting, scaling,
error-correcting code generation and detection, ranging, prescribed
sequence generation, and single-valued curve  generation.

Among the er switching functions of r Boolean variables,
there are 2-4(27-1)/r lirear functions which result in cycles of length
2T-1. [¢(n), fhe Euler—phi-function?is the number of integers no

greater than n that are velatively prime to n }. These are termed

maximal-length cycles. A switching function which can be expressed as

f(xl, Xoy + + +» xn) =c, (5] c1%q -0 ¥ (5.3)

is linear where cy = 0 or1for 0 <i<n. When the feedback function
is linear, a necessary but not sufficient condition for realizing maxi-
mal-length cycles is that the content of an even mumber of stages is fed
back. For many values of r, as few as two stages are required. Two-
tap linear logic feedback for an r-stage FSR yields the most efficient
FSR (cycle length per cost of coﬁbinational logic) in terms of imple-
mentation. The maximal-length sequence associated with a linear FSR
also has useful pseudo-randomness characteristics including a two-level

autocorrelation property [G—67}. The simplicity of the two-tap linear
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FSR, its serial character, and synchronous bchavior makes it attractive
for science data processing tasks in interplanetary spacecraft.

Successive states do not correspond to linearly incréasing s
(or decreasing) binary numbers. Serial techniques involving another
FSR can be used to decode or translate a count. In many cases, however,
a parallel translation is required in the interest of speed. No
analytical solution has been found for transforming successive states
of an FSR with long cycle lengths to ordered binary nunbers which are
in a one-to-one correspondence.

MIN-6 enables a logical designer to minimize a two-level
AND-OR diode matrix which serves to translate an FSR code to a binary
number. This is illustrated in example 5.2.
EXAMPLE 5.2

Given A 4 stage FSR with the following feedback. function:

B = 318 Ay

Every non zero state lies in a maximal-length cycle of
length 15. Let the initial state a_; a_, aza,0f110 b represent
a binary 0. Successive states are to represent the binary numbers from
1 through 14 respectively. The FSR state 0 0 0 0 is singular (i.e.,
lies in a cycle of length 1) and is treated as a 'don't care." Tﬁe
MIN-6 solution of EXample 5.2 appears in Fig. 5.2. Fig. 5.2 is a photo
reduction of the actual off-line printout of 5 pages. The canonical
input array (upper left) appears on page 1. The canonical input array
option defaults to a minimize on solution unless minimize off is specified.
The input cubes areAsupplied to the computer in octal whereas the output

cubes are supplied in binary. Note that the digit 2 represents a den't
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2 FSR TJ BINARY TRANSLATUR I%S 1100

PRIBLEY 1AS % INPUTS AND & JUTPUTS

CANDNICAL INPUT AR]AY

PRIBLEM HAS o [NPUTS AWD & JUTPUTS
DONT CTARZ ARRAY
ARQAY ARY 1 CUuBES uJF LOSY -]

0000 i
END OF ARRAY

INPITS 3uTPUTS
14 1100 0000
16 1110 0001
17 1111 0010
57 o111 0011
13 1011 0100
25 o101 0101
12 1010 0110
15 1101 011}
96 0110 1000
23 o0l 1001
11 1091 1010
06 0100 1011
22 0010 1100
1 0031 1101
10 1000 1110
i 00 0000 2222
END OF AR3AY
PRIBLEY 4AS & INPUTS AND & DJUTPUTS
OFF ARIAY
ARRAY AAS 32 CUBES OF COST 16D
1100 1000
1110 1000
1111 1000
0111 . 1000
1011 1000
0101 1000
1010 1000
1101 1000
1100 0100
1119 0100
un 0100
ol11 0100
0110 0100
0011 0100
1001 0100
0100 0100
1100 0010
1110 0010
1011 0010
0101 0010
0110 0010
0011 0010
0010 0010
0001 0010
1109 0001
1111 0001
1011 0001
1919 0001
0110 0001
1001 0001
0010 0001
1000 0001

END UF ARRAY

ON ARRAY

49 JU3ES
CUMPLETE ARRAY HAS 23 CUBES JF CasT 108
ELAPSED TIME AT START JF EXTRACTION IS 0.511

‘BRANCHING HAS JCZURRED. ELAPSED TIME [S 0.531

PRE-BRANIHING EXTRLMALS - b CUBES REMAINING - 13

LATEST SJLUTION HAS | 12 CyBES JF JDST 1
ELAPSED FI%E IS 0.551

BRANCH NJIMBER -~ 1 BRANCH LEVEL ~ &
il

LATEST SILUTION HAS 13 CJ43ES JF TUST 55
ELAPSED TIME IS 0.581

BRANCH NJMBER - 3 BRANCH LEVEL - 3

112

LATEST 33LUTION rAS 13 CusEsS 3F C3ST 53
ELAPSED TIME IS 0.616

BRANCH NJMBER - L3 BRANCH LEVEL - 2

10

LATEST S3LUTIDN HAS 12 Cues JIF COSY 53
ELAPSED TIME 1S 0.653

BRANCH NJMJER - 5 BRANCH LEVEL - 2

01

MAXIMUM NUMBER OF BRANCAING LEVELS USED WAS 4
NUMBER OF BRANCHES TRAZED -~ * 8

EXTRACTIIN TIME = J.168

FIG. 5-2

FSR (4-stage) Code
to Binary Translator

COST OF SULUTION SiLFJRE RCMOVING REDJINDANT JUTPIT LINES -

SULUTIIN NIMBER 1 HAS 13 CJ3ES OF COST 52

INPUTS QUTPUTS

1110 o1 o004
211 05 0101
1231 02 0010
1012 04 01092
Q234 04 0100
2111 02 0010
10202 o2 0010
0200 03 0C11
2002 19 1000
o221 01 0001
0022 10 1000
0220 10 1000
2020 04 0100

END OF ARRAY
TOST OF SOLUTION BIFORE REMOVING REDUNDANT QUTPUT LINES -

SOLUTION NJMBER 2 HAS 12 CJBES OF COSY 50

INPUTS QuUTPUTS

1121 07 o1l
1110 01 0001
2111 02 0010
0221 24 o100
1020 02 0010
1022 12 1010
0200 93 0011
io12 04 010G
0221 ot 0301
0022 10 1000
0220 12 1000
2020 04 0100

END OF A3RAY

ELAPSED TIME = 0.929 "IWTesS

53

53
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care coordinate. A preprocessor converts the input octal array to a
binary array. On page 2 (upper right) the don't care array isiseparated
out by the preprocessor. On page 3 (center left) the Muller coded off
array is determined by the preprocessor. Note that a minimized on is
actually being requested. Therefore, the off array is sharped from

the universal cube to generate the prime cubes of the on array. The

32 cubes with a cost of 160 diodes in the off array is associated with
Muller coded off array.

The 4-input 4-output problem is hereafter treated as an
imaginary 8-input 1l-output network. The input cube and its associated
Muller coded output cube are combined to form a vertex of eight
coordinates. The Muller transformation also introduces ''don't care"
vertices [M-661. On page 4 (center right), the number of cubes (23)
and their cost (108 diodés) of the complete array is given. These
represent a K-cover of L of the 8-input l-output problem resulting
from sharping the Muller coded off array from the universal cube.
Elapsed times appearing in the printout are in minutes. The extraction
algorithm, for example, was applied 0.511 minutes after the problem was
received. The branching status of each currently cheapest solution is
printed out. The maximum number of branching levels and the number of
branches traced are notéd. Page 5 (bottom of Fig. 5-2) gives two of
the four solutions found. These are of equal cost. However, solution
2 requires one less cube or gate. The total elapsed time was 0.929
minutes of which 0.168 minutes was consumed by the extraction algorithm.

Let x; correspond to a; ;. The output z; 2z, 25 z; is the

translation into binary of the FSR code represented by Xy Xy X3 X,
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Solution 2 of example 5.2 is expressed algebraically as follows:
zqy =X xé xé + xi xé + xi x&

zy = X X, xé X, * xi x% X, + X; xé Xz + xé xé

[ 4 1
Xy Xp X3 Xp + Xy Xg Xy * X) X5 Xyt Xp X5 Xg X)Xz Xy

= 1 ' .
2y =X Xp X3 Xp X)Xy Xy Xg o+ X)Xz X+ X)Xy

The underlined terms are shared. The derivation of the
simultaneously minimized functions from the minimized single func-
tion (after the Muller transformation) is detailed in [M-54]. The
second level of minimization is approximate for many multiple output
pfobléms since the search for a minimum-cost solution would require
the generation of an unusually large number of prime cubes after Muller
coding [M—66}. The cost of the inputs to the first level of gating is
minimized and any redundancy in their outputs is removed when forming
the second level of gating. The MIN-6 solutions gives the cost before
and after removing redundant output lines from their outputs. See
Fig. 5-2. Solutions 1 and 2" of Example 5.2 have a cost of 50 diodes.
The canonical form requires 88 diodes. This represents a reduction
of 43%. |
EXAMPLE 5-3

An FSR to binary translator for-a 5-stage maximal length FSR

was minimized with MIN-6. The feedback function was

A = 22 O s
Every non-zero state lies in a maximal-length cyclerf length 31. A
total of 31 state assignments were minimized with the coface algorithm.

Each of the 31 cyclic permutations of the FSR states were put into a



TEST 11 FSR TRAMSLATOR NS 01101

ON ARRAY

129 JUBES
COMPLETE ARRAY HAS 66 CUBES JOF CusT 376
ELAPSED TIME AT START OF EXTRATITION IS 0.3585
BRANCHING HAS OCCURRED. ELAPSED TINME (S 0.669
PRE-BRANZHING EXTREMALS - 12 CUBES REMAIMING - 32
LATEST SOLUTION HAS 26 CMBES OF COST 148
ELAPSED TIMC IS 0.737
BRANCH NUMBER - 1 BRANCH LEVEL ~ 7
111111
LATEST SJLUTION HAS 25 CUBES OF COST 143
ELAPSED TIML IS 0.772
BRANCH NUMBER - 2 BRANCH LEVEL - 7
1111110
LATEST SJLUTIUN HAS 25 CUBES OF COST 143
ELAPSED TIME 1Is 0.818
BRANCH NUMBER - 3 BRANCH LEVEL ~ 7
1110101
LATEST SOLUTION HAS 26 CUBES OF COST 140
ELAPSED TIME IS 0.930
BRANCH NUMBER -~ 26 BRANCH LEVEL -~ &
1010 :
MAXIMUM NUMBER UF BRANCHING LEVELS USED WAS 190
NUMBER OF BRANCHES TRAZAD - 152

EXTRACTIIN TIME - 1.255 .

COST OF SULUTIUN RIFURE RENOVINS REQUNOANT SUTPUT LINES - 140

SULUTION NUMBER 1 HAS 26 CUBES UF COST 132

INPUTS OUTPUTS

11201 12 01010
02000 06 oCcilo
12101 20 10000
10211 10 01000
00102 02 00019
01210 20 10000
00201 04 00100
11012 R 11010
10121 20 10000
21001 e o1 00001
11112 06 00110
20100 . 22 10010
00J12 02 00010
00210 [¢3 8 00001
01120 14 01100
21011 06 00110
10112 15 01101
12021 02 00016
12200 0% 00100
20121 11 olool
02002 20 10000
01212 10 01000
20020 20 10000
12121 ol 006001
12102 [¢3 00001
10202 ol 00001

END OF ARRAY

ELAPSED TIME = 20120 MINUTES

FIG. 5-3

FSR (5-stage) Code to
Binary Translator-
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one-to-one correspondence with the 5 place binary numbers from00000
through 1 1 1 1 0. The canonical form for each assignment consists of
»230 diodes. Those assignments which yielded a reduction of more thanf
35% were rerun with the sharp algorithm.
The assignment having 0 1 1 0 1 as the initial state yielded

the highest reduction, namely 42.6%. See Fig. 5-3.



5.2 Prescribed Sequence Generator

Serial data emanating froﬁ a digital data processor in a
~spacecraft are divided into blocks or frames. Binary sequences are
inserted to identify the beginning of a data frame.

Every n-bit sequence which is subperiod free can be char-
acterized as a binary (n, r) ring sequence. The (n, r) BRS is an
ordered cycle of n distinct r-bit subsequences. Any value of r which
yields n distinct subsequences may be used. Necessafily 2t > n. The
sequence

ac a, as a, a
0 0 0 1 0 1
is represented as a (6, 4), (6, 5), (6, 6) and (6, 7) binary ring sequence
(BRS) in Table 5-1. |
6, 4) 6,5 (6,6 6= 7)

0001 00010 000101 0001010

1000 10001 100010 1000101

0100 01000 010001 0100010

1010 10100 101000 1010001

0101 01010 010100 0101000

0010 00101 001010 0010100

Table g—l BRS Representations of 000101
A (6, 3) BRS characterization does nof exist for 000101 even though
23 > 6. This is due to the double appearance of the subsequence 010
in the ring. Successive states of an r-étage FSR can be made to corres-
pond to n successive r-bit subsequences in the (n, f) BRS. The minimun

value of r which characterizes an n-place subperiod free sequence as an
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(n, r) BRS falls in the range of values expressed by 5.3.

1+ {lngrﬂ <r<nmn-l (5.3)

The bracketed term denotes the nearest integer which is less than

log2 n.

A proof is given in '[&62} of the existence of (n, r) BRSs
for any r and n 2. 1f only the length n is specified one may be
found with a BRS characterization where r has the smallest possible

value which satisfies the inequalities of 5.4,

<n< 2f (5.4)
All n-bit subperiod free sequences for 1 < n < 9 are classified accord-

ing to the feedback function of their (n, r

[pss:].

min) BRS generators in

A constructive proof appears in [é67i}showing that the linear
feedback function of an r-stage maximal length FSR can be altered to
realize any cycle length from 1 to 2", The structure of the resulting
sequence, however, is fixed. In general, an altered maximal-length
sequence must be transformed to the desired sequence. This can be dore
by an r x 1 AND-OR matrix which translates & successive r-bit states
to the desired sequence of length £. Note that sequences with sub-
periods can also be derived in this manneé.

When designing a prescribed sequence generator, (n, r) BRS
generation can be compared on the basis of overall cost for various
values of r. Overall cost includes cost of memory elements as well as
decision elements (i.e., combinational logic). These results can then

be contrasted with a maximal-length FSR generator altered, if necessary,



3.

to cyéic through h successive states each of which is transfonned to
a single bit in the desired sequence. These steps are illustrated in
the following example. |
EXAMPLE 5-4.
‘The sequence
0100010111 {%
9876543210 k
is to be generated. The (n, T .
The minimized feedback functions for a (10, 4) and a (10, 5) BRS

) corresponding to '{ak} is (10, 4).

generator are determined from Table 5-2.

kg A, &g By Ay Ay Fg By s
o 0 1 0 0 o 1 0 0 o0 1
1 1 0 1 0 1 0 1 o0 o0 1
2 1 1 0 1 1 1 o 1 o 1
301 1 1 0 1 1 1 0 1 0
4 0o 1 1 1 o 1 1 1 0 1
5 1 0 1 1 i 0o 1 1 1 0
6 o0 1 o0 1 o 1 o 1 1 0
7 0 0 1 0 o o 1 o 1 .0
g8 0 0 o0 1 o o0 0 I 0 1
s 1 0 0 0 1 o o0 0 1 0

Table 5-2 State Tables for a
(10, 4) and a (10, 5) BRS
Generator for 0100010111

Unused entries are treated as don't cares.
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(10, 4) BRS generator

[ L |
3 T %1 %2 %3 T %1 -2 %-3
1

1
T2 -3 -4

+

-1 k-2 -4
1

Y1 -2 k-3 k4
cost 56 + 21y
(10, 5) BRS generator
1
% = -5

cost 58 + Oy
(The reader may verify that branches occur in the states of the (10, 4)
BRS and the 1111 state is singular.) The cost of a memory element is
denoted as §. The decisicn element is assumed to be a diode gate with
a cost % equal to the number of diodes. The costs of tﬁe (10, 4) and
the (10, 5) BRS generators are equal when

56 = 48 + 21y or &§/y = 21

The feedback function

b b

b b

® b, _ k-4

k = k-1 k-3

has a major cycle of length 10. The maximal-length cycle 15 associated
with bk-3 8 bk-4 is shortened by skipping 5 states. The nonlinear teim
f

k-1 Pk-2 P
instead of 1011 by inverting the bit that is normally fed back. By treat-

k-3 Py.gq causes the state 0111 to be succeeded by 0011

int the 5 states that are skipped and the singular state 0000 as don't

cares, the feedback function reduces to
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The state diagram appears in Fig. 5-4.

- 7’1’\/5 s . /’(“ ,
(/) (:1 §=ia

~t N V) - - 7
’ Gyt e
-7
i;/.z)j .

..

P~
§9 .
)

7

\

A of
B N 3
/“&‘ 2ok’
‘“1\ 2 )

Fig. 5-4 . FSR State Diagram for

'

b b b

1 1
by = by g Peog t Ppg Py Py

k-1
Though { bk} has the required cycle length*when properly initialized,
none of the 10 possible initial states yields the desired sequence {a) -

The distinct successive states by 1 byx-2 by.3 by, can be transformed

to bits corresponding tci_ {ak} . Each of the 10 cyclic permutations of

the 10 states can be used in the state assignment for realizing {2}
Two of the 10 require combinational logic of minimum cost. A minimum

cost assignment appears in Table 5-3 where b‘_1 b_2 b-3 b_4 of 1110

corresponds to a o



[
(=}
]

ot
o

k-1 Pk-2 Pz Prg B 3
0 1 1 1 0 11
1 1 1 1 1 0 1
2 0 1 1 1 o 1
3 0 0 1 1 1 0
4 1 0 0 1 0 1
5 0 1 0 0 0 0
6 0 0 1 0 0. 0
7 0 0 0 1 10
8 1 0 0 0 11
9 1 1 0 0 1 0

Table 5-3 State Table for Transforming
Successive States of an FSR to 0100010111
From Table 5-3

= £0y_1> By g0 byoss Big) = by g by * by By

The overall cost of an FSR transformation for generating {ak}
is

48 + 7y (feedback) + 6y (transfofmation)
This cost is lower than that of the (10, 4) BRS generator and equai
to that of the (10, 5) BRS when 6/y = 13.

The MIN-6 program is organized to accept a sequence of problems
to be solved independently. This flexibility makes it possible to

investigate various approaches and assignments in the synthesis of sequential

networks.



5.3 éinary Sequence Detector

Binary sequence detectors may be used in ground decoding
equipment for locating each successive data frame. An identifier
(prescribed sequence) appears at the beginning of each serialized
data frame. See subsection 5.2. The sequence detector is analogous
to an electronic combination 1pck which remains closed until a pre-
scribed sequence is entered. It is opened only for the CPI following.
the last bit in the sequence. |

The detector of any given n-bit sequence may be viewed as
a séquential network having one input and one output. The sequential
network must be capable of assuming at least n-distinct internal states.

e2
viously defined. Given the cost of the memory and decision elements,

- The minimum number of memory elements required is 1 + [100 n] as pre-

1

there is no known algorithm for assigning state-values to 1 + Elogz n

or more memory elements such-that the overall cost of the sequential
network is minimized. Exhaustive comparisons of state assignments are
beyond the reach of present-day general-purpose computers except for
minimum state networks where n is less than 9. The binary sequence
detector represents a very special class of sequential networks and
may therefore be treated accordingly.

The familiar shift register toggther with an n-input decision
element can serve to detect any given n-bit sequence. The register
serially stores n-1 bits. These and the nEh-bit (just prior to entering
the register) are sensed by an n;input decision element. Thus the given
n-bit sequence can be located wherever it cccurs. Though straight-
forward, this method is uneccnomical in terms of the nurber of memory

elements required. For large n, the number of decision elements to
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practically realize an effective n-input decision element is also
significant.

When the given sequence is subperiod free, an alternate
approach can be used. The steps in the synthesis procedure {P68—1]
are illustrated in Example 5.4.

EXAMPLE 5.4

Given the following sequence

1101110000 {a}

9876543210 k
The sequence'{ak} has an (n, T . ) Bﬁs representation of (10, 4).

This is a minimum Toin’ The ten 4-bit subsequences are tabulated

in Table 5.4.
k Q1 A2 Bz By ay
0 1 1 0 1 0
1 0 1 1 0 0
2 0 0 1 1 0
3 0 0 0 1 0
4 0 0 0 0 1
5 1 0 0 0 1
6 1 1 0 0 1
7 1 1 1 0 0
8 0 1 1 1 1
9 1 0 1 1 1
TABLE 5.4 (10, 4) BRS GENERATOR OF 11011100 0 0

An FSR can be used to realize the (10, 4) BRS generator
with the following feedback function
B = a1 ot %3 g T A2 -3 k-4

The six unspecified states are treated as den't cares. Thus
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+

a1 32 -3 * Ao s Fa Y Ay g Az oy

* -1 -2 -3 %4 =0 :

The (10, 4) BRS characterization of'{ak} and the associated
FSR implementation suggest an organization of a sequential network for
detecting'{ak} within serialized binary data. In Table 5-5 the internal
states of the proposed sequential network are labeled numerically with
an initial state designation of 1. The number of internal states, 10;

is the number of bits in the sequence. The input to the detector is

represented by the Boolean variable x.

Next State Present Output

Present

State 0

x=0 x =1

n
"

1 0 0

2

v e @0 v e OO

10

©® - Q@ - - - ~|!

TABLE 5-5  STATE TABLE FOR A BINARY SEQUENCE DETECTOR
The arrival of the first 0 on the x input line (i.e., possible
start of the sequence, ao) causes the state transiticn from 1 (initial

present state) to 2 (next state). Should each succeeding bit be part
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of the’sequence to be detected, the sequential network progresscs
through each state in numerical order. This is indicated in the
encircled next states in the state table. During the time thé net-
work is in the present state 10 and 1 is on the line, the detector's
(present) output is 1. The output is a function of the total state,
input state and internal state, of the network. This is a Mealy
model of the sequential network.

If at.any time a bit is received which is not in the sequence,
though previous bits were identical to the start of the sequence, the
ﬁetwork must return to the initial state 1, state 2 or 3, or remain in
state 5. Since the sequence begins with a 0, whenever a 1 arrives
improperly located in the sequence, the network mﬁst return to state 2
or 3 or remain in state 5 if preceded by a run of four 0's. For
example, assume the network is in present state 9 (meaning the 8 pre-
vious bits correépond to the first 8 bits in the sequence) and the 93}—1
bit is a 0 instead of a 1. Clearly the network should not progress to
the state 10. It should instead return to state 3 since bit 8 and
bit 9 (now entering) correspond to the first two bits in the sequénce.
Thus the SEh-bit of the 9-bit block could possibly be the start of the
sequence.

It is proposeé that the state agsignment be taken from the
ordered subsequence in the (n, rmin) BRS such that:

1) Successive states through which thg detector progresses
when the sequence is entered are made to correspond to
successive subsequences, and

2) An initial state is chosen whereby one of a total of Tin
delay units in the detector will track the input x at

all times.
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A state assignment satisfying steps 1 and 2 appears in
Table 5-6. Four delay units are required for the detector in’f
Example 5.4, Let d1 d2 d3 d4 and D D, D, D, represent the present
and next internal state, respectively.

Table 5-6 is divided into three parts for explanatory pur-
poses. The top 10 entries describe the detector's behavior when’{ak}
is entered. The next 10 entries correspond to a present to next state
transition when the input x is not properiy in'{ak}. A total state
xdyd,dg;d, of 01101 indicates that the 8 bits previously entered
correspond to the first 8 bits in'{ak}. The present input x is 0

th

whereas the 9— bit of'{ak} is 1. The next state D, D, D, D, is 0 0 0 0

1727374
or state 3 since the previous and present input could be the start of
'{ak}. The lower portion of Table 5-6 contains unspecified (i.e.,
usused) total states. The next internal states are therefore treated
as don't cares.

The next state of each delay unit and the ﬁresent output of
the detector, denoted as Z, are Boolean functions of x, dl, dZ’ dS% and
d4. Dl’ DZ’ DS’ D4 and Z may be expressed in (disjunctive or conjunctive)
canonical form directly from Table 5-6. These functions represent a

multioutput combinational logic network.

Four of the outputs serve as inputs to the delay units. MIN-6
was used in the simultaneous minimization of the next-state functions.
Only one specified canonical input (i.e., tbtal state) is associated
with Z. In an effort to reduce the number of simultaneous functions

in the computer minimization, Z is treated as a single output function.
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STATE TABLE FOR A BINARY SEQUENCE DETECTOR

The simultaneous minimized solutions of Dl’ DZ’ D3,‘and D4 together

with a minimized Z represent a two-level AND-OR diode matrix implementa-

tion of the detector's combinational logic.



For Example 5.4

=)
|

=X dZ d d + d d' d + x! d d + x! d' d&

D2 = dz'di d! + x! d1 dé + X d1 d2

4
D3 =X
D, =x dé + d3
and Z =X d; d3 d;

The cost of the detector is 4 memory elements and 31 diodes.
The number of diodes required without minimization is 140! (See Table
5-6). In practice an inverter is required to generate x'. However,
signal conditioning of x would be ﬁeeded for any detection method. It
will be assumed that the signal conditioner will provide the assertion
and negation of x.

The cost of the multioutput combinational logic for the
implementation of Dl’ DZ’ 25 and D4 in Example 5-4 was determined for
each possible initial state. These costs appear in Table 5-7. Initial
state assignments for which one of the delay umits tracks the input, x,
results in a lower diode cost than the remaining choices. In par£icu]ar,

the initial state 0 0 1 1 for which Dy = x yields a minimum cost.



Initial State Diode Cost

1101 32 D
0110 31 D
0011 27 D
0001 35 D
0000 45
1000 66
1100 67
1110 64
0111 56
1011 54

'TABLE 5-7 _DIODE COST VERSUS INITIAL STATE
FOR DETECTOR IN EXAMPLE 5-4.

i



5.4 Digital Techniques For Generating a Time Dependent Acceleration
Voltage For a Mass Spectrometer

5.4.1 Introduction

An unmanned interplanetary flight to Mars has been proposed
for 1971. An entry probe is to be released from the spacecraft for
a descent into the Martian atmosphere. The determination of the con-
stituents of the Martian atmosphere and their relative abundance is
one of the scientific goals.

A single focusing mass spectrometer E@SS] was first con-
sidered. The essential components of the instrument appear in Fig.
5-6. The instrument portion is shown in its mechanical configuration
whereas the support electronics is represented in functional blocks.
5.4.2 Instrument Operation

The gas to be analyzed is introduced into the.ionization
chamber. A portion of the sample gas is ionized when bombarded by
an electron beam which is parallel to the source exit slit. The
high voltage sweep produces an electrostatic field which accelerates
the ions through the source exit slit with approximately.homogeneoﬁs
energy. The resulting ion beam is deflected by the electromagnetic
field of the analyzer (permanent) magnet- such that at a given value
of v (high voltage sweeﬁ) all ions with a particular mass per unit
charge are focused on the collector defining slit. The ion current
is collected and fed into a vefy sensitive operational amplifier
called an electrometer. Automatic scale switching provides an

increase in dynamic range.
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A monotonically varying v is used to separate ions with
different masses per unit charge. A plot of the ion current versus
| time (resulting from a monotonically varying v) yields a sp{actrogram. .
The location of a peak in time identifies the associated mass per
unit charge and the amplitude of the peak is a function of its rela-
tive abundance.
An important parameter is the instrument's resolution. The
mass per unit charge , %, is in atomic méss units where the isotope 16é 0
'is taken to be 16. It differs slightly frcom the chemical scale of
atomic weights [Lsgg . Hereafter, the atomic mass units (a m u) will
be referred to as mass (m) .' The resolution of the instrument is defined

at a particular m as follows:

7

")°/o

4
BB

&

!
=
»i

_m = m
Amj| n% mMm+1i) -m x 100%

— + + i
where m = & (m + i)

and x and y are time measurements. The resolution of the instrument
described in this report is:

n
-Am

25
1%
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That is, at mass 25, the instrument has unit resolution.

5.4.3 Parameters For Determining the Acceleration Voltage Curye'

A. JTon Ballistics

The ion ballistics of the instrument in Fig. 1 is expressed

as follows:
_ 144 M
R= 5 @V
where R = 3.81 cm.
B = 3,780 Gauss
M_ mis in a m u.
q

and v is in volts.
Thus,
m(t) v(t) = 10,000
At time t the velocity (which is proporticnal to v) and the mass m
of the ions determine its radius of deflection which must be 3.81 am.
to be focused on the collector defining stit. An accelerating voltage
which decays exponentially can be approximated by an RC discharge.
The base width of the ion peaks over the entire mass range are nearly
the same for the exponen_tiél accelerating voltage where
_t'
v(t) = v(0)e ¥
Unfortunately, ion peaks will not appear. linearly separated in time.
A linear separation of ion peaks with respect to time is

desirable when interpreting a spectogram. The form required for m(t) is

m(t) = at + m(0).



Thus

_ 10,000
v(t) = at + m(0)

A hyperbolic (i.e., inverse) acceleration voltage cannot be generated
by analog methods as readily as the exponential.

Unlike the exponential case, the base width of the ion peaks
varies directly with atomic mass unit interval.
B. Mass Range

The mass range for the instrument in question is 10 to 45.
Thus v(t) must vary from 1000 to 222.22 volts. A lower limit of 220
volts is-actually used. This places the ion peak associated with

mass 45 within the spectrum.

5.4.4 Hyperbolic Curve Generation Using Digital Techniques
A. The Derivation of Successive Decremented DC Voltage Levels of
Fixed Duration. '
The calculus of finite differences [HS:; yields the follow-

ing discrete relationships:

n[t(k)] = at(k) + m(0) = at(k) + 10 = m(k)

: . 1000 1000
v[t(k)] Tat(R) +1 ak+1 v(k) (5.5)

t(k) = k for k = 0,1, ..., 251
and r is an integer.

From (5.5) where V(Zr-ll) = 220 volts,

at = 39 = a
11(2%-1) 21
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The quantization required for v in quanta is:

o lve | BFaen-eallasd
av(25-3) - a

av(k) is the forward difference and av(2'-2) = v(2'-1) - v(2'-2).

Note that av(2'-2) is smallest change v undergoes.

. L 2a +1\|[. 1
Voltage Quantization _ R [a +1 - ( T ) lg + 1j
[ .20 L
a

Time Quantization 2T
R G+ 1)°
- = x =58 forr>35
2 a

Thus if time is quantized with r bits (r > 5), voltage must be
quantized to r + 3 bits to recognize av(2'-2).

Fig. 5-7 illustrates this method. Time is quﬁntized by means
of feedback shift register (FSR) operating syncﬁronousiy with a con-
" stant clock frequency. The nine stage FSR is cycled through 512
internal states. The assertion outputs of the nine stages represent
a 9-bit non-weighted code. A two-level diode AND-OR matrix with
twelve outputs translates the 9-bit non-weighted to a 12-bit weighted
(positional) code. The 12-bit representation is converted to a DC
voltage level which is proportional to the magnitude of 12-bit binary
number. This is the function of the digital to analcg converter. The
1000 to 220 volt hyperbolic sweep appears at the output of the high
voltage operational amplifier. Successive decremented levels of a

fixed duration appear at the output of the D/A ccnverter.
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The number of diodes in the AND-OR matrix which represent the
9 input twelve output truth table in disjunctive canonical fonﬁ'is 4608
for ANDing and 3054 for ORing or a total of 7662 diodes..'A_silicon on
sapphire microelectronic implementation of the diode AND-OR matrix is
currently under test.

MIN-6 was used to find a cover of approximate minimum cost.
A reduction of 738 diodes or 9.6% was realized in 4 hours and 12 minutes
of computer running time. This program was the only one found which
could handle the 12 Boolean functions of 9 variaﬁles. It has since been
, improved particularly for the cover options of approximately minimum cost.
Further runs will be made with the improved program.
EXAMPLE 5-5 Hyperbolic Curve Generation with 2S quanta

Since time is quantized with r = 5 bits, 8 biFs are required

to recognize AV(SO).

_ 255 ' _
V(k) = w;—i for k = 0,1, cooy 31
11 31

The largest 8 bit binary mumber, 255, is used to represent 1000 volts.

The feedback function for the 5-stage FSR is

A T A3 O g @A ) A3 Ay A
Successive inputs and outputs of a 5 x 8 matrix appears in TABLE 5-8.
Note that a,_; has been replaced by x;. A plot of Z=12;2,...1%g in
decimal versus k appears in Fig. 5-8.

The 8 Boolean functicns of 5 variables were minimized
simultaheously under a cover option of approximate minimum cost. In

TABLE 5-8 10000 is the initial state and the singular state 00000 is

the terminal state which remains until the first stage is set (i.e., Xy



==

is made a 1). This initial state yielded the best minimum cover of all
the possible 32 initial states. The effect of using a differeﬁi initial
state is to cyclically permute the input states relative to the fixed
output states. A total of 293 diodes is associated with each of 32
canonical truth tables. A reduction of 119 diodes or 40.6% was realized
with 1000 as an initial state. The initial state of 10101 yielded the
smallest reduction of 67 diodes cr 22.8%. Each of the minimization
runs required less than 2 minutes of IBM 7094 computing time. This
included pre-processing, extraction, and post-processing time.
An\alternate approach is discussed in,EP68-2} whereby the
duration of successive DC voltage levels is faried such that a hyper-

bolic curve results with equal changes in voltage levels.
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AN AXIOMATIC TREATMENT
OF ROTH'S EXTRACTION ALGORITHM *

by

Eric G. Wagner

IBM Watson Research Center
Yorktown Heights, New York

ABSTRACT: In this paper, we present a general axiomatic
treatment of J. Paul Roth's "extraction algorithm' for the
minimization of logical circuits.” This treatment brings
together the seemingly different versions of the algorithm
presented in Roth's different papers. It provides a general
proof of the algorithm over a wide range of cost functions.
The minimization problem and the algorithm are presented
in an abstract context (i.e., without direct reference to any
particular application, such as switching circuits) and is
thus applicable to any ''covering problem'' in which the
axioms are satisfied.

* This research was supported in part by J. P. L. Contract
#951-538, '



INTRODUCTION

In this paper we present a general axiomatic
treatment of J. P. Roth's "extraction algorithm. ' This
treatn;ent brings together the seemingly different versions
of the algorithm presented in Roth's different papers, it
provides a .general proof of the algorithm, and it facili-
tates the application of the algorithm to new situations

The extraction algorithm was originally developed
by Roth [R-2] as a means (algorithm) for finding minimal
two-level AND-OR circuits. In later papers it was refined
[E-R-Ww] and spgcial extraction algorithms were
developed for othér classes of logical circuits [R-W]
(and various unpublished results).

The type of problem to which the extraction algor-
items are directed may be roughly described as follows:
We are given a finite set K of objects which (in some
sense) cover another set of objects L and, indeed, cover
it more than once. Each object in K has a non-negative

cost associated with it. The extraction problem is to find

a subset M of K which covers L and is of minimal cost

in that there is no other subset of K which both covers



L and is of lower cost than M. In the simpler cases
the cost of a subset of K is just the sum of the cost of
its elements; however, in the general case, more com-
plex cost functions are emx;loyed.

From a pure mathematics point of view, the
extraction problem is trivial since, because K is finite,
tile problem may always be solved by an exhaustive ex-
amination and comparison of all subsets of K. Clearly
though, if K is large, the number of subsets is astro~-
nomical (e.g., if K, contains 20 elements, then there
are approxima.teiy 1, 000, 000 subsets), and such an ex~
haustive examination is impractical using even the fastest
‘computers. Thus, the real problem is to develop algor-
ithms which are efficient .enough to deal with problems of
reasonable size. T‘he efficacy of the general extraction
algorithm is, as will be seen, dependent on the nature of
the problem. 1In the worst case it approaches exhaustion,
but in the best cases it provides an answer directly without
any exhaustive examination of cases. Design automation
programs employing the extraction algorithm have proven

their usefulness in the field in application to a variety of



real design problems.

In this paper our treatment of the extraction prob-
lem ar_xd the extraction algorithm is quite abstract (and
thus quite general). We start, in Section 1, by stating
the extraction problem in terms of abstractly defined
notions of cover and cost. (The notion of a cover is de-
fined in terms of a '"'difference' operation.) In Section 2
we present a first set of axiloms for the extraction algor-
ithm. These axioms are quite complex (to the point of
inelegance), but they lead to a very general presentation
and proof of the extraction algorithm. In Section 3 we
present an alternative set of axioms and show that they
imply the fims t set. These simpler axioms are designed
to facilitate the proof (or disproof) of the applicability of
the extraction algorithm in real situations. In Section 4

we sketch two examples of applications of the algorithm.



Notational Conventions

R+ non-negative real numbers;

K-k for K- {k};
Kuk for Ku {k};
P(S) power set of S (set of ?.11 subsets of S );
I a partition of K, keK, I(k) class in
NI containing k (partitions do not

include ¢ ).



1. THE EXTRACTION PROBLEM

In this section we present the basic definitions
used in our approach. We will give interpretations of
these ;lefinitions, but their '"real meaning' is given by

the axioms in the remaining sections. We start from:

T, a set (from which we draw subsets to be
covered);

S, a set (from which we draw the subsets which
cover);

d: P(T) XP(T u S) =-P(T), the difference
function;

c : P(S) X P{S) -——R+ , the relative-cost function.

Informally speaking, what we are interested in
is "covering' subsets of S with subsets of T of minimal
"cost. " The notion of '"covering' is defined in terms of
the function d; the notion of ''cost'' is defined in terms
of the function ¢. Given LCT and KCS, wecan
interpret d(L, K) as being ''the part of L not covered

by K." Correspondingly, we can interpret d(L, d(L, K))



as being 'the part of L covered by K." Given K,
K'CS we can interpret c(K, K'!) as being 'the cost of
K' given that one already has K .'" Of course, these
interp;retations will not "make sense' for arbitrary
choices of d and c¢. However, with the axioms given
in the following sections, these interpretations become
"natural.'" These interpretations though lead to the

following definitions:

Let c%: P(S)—»R+ such that, for every KCS,

c*¥(K) = c(¢, K) .

Given KCS, LCT, and I1CS, we definea

cover of L to be any subset CCS such that
d(L,C) = ¢ ;

(K/I)-cover of L to be any cover C of L such
that ICCCKul;

K-cover of L to be any (K/¢)-cover of L ;

minimal (K/I)-cover of L to be a (K/I)-cover

M of L such that, for every (K/I)-cover



C of L
c*¥(C) 2 c¥(M) ;

_minimal K-cover of L to be any minimal (K/¢)-

cover of L.

Using the above definitions, we define:

The Extraction Problem: Given T, S, d, and ¢, and

given LCT and KCT, K finite, and such that
d(L,K) =¢ (i.e., K isa cover of L), find a minimal

K-cover of L .



2. THE BASIC EXTRACTION ALGORITHM~~FIRST
AXIOMS AND PROOF

This section begins with four rather complex

axioms which we may imposeon T, S, d and c.

’,

We then present an algorithm, the extraction algorithm,
and show that, when the axioms hold, this algorithm
always leads to a solution of the extraction pr.oblem.

The complexity of the axioms facilitates the statement
aﬁd proof of the extraction algorithm; in the next section
we will present a variety of simpler axioms which imply

these initial axioms.

The Initial Axioms

While the extraction problem was stated purely
intermsof T, S, d, and c, the axioms and algorithm
employ one additional object, namely, a partition II of
S. Givemnany KCS, let 1'[K denote the restriction of
I to K, and, given keKCS, let l'[K(k) denote the
element of IIK which contains k. The axiomson T,

S, d, ¢, and N1 are then as follows:

Forall LCT and I, KCS such that d(L,I1u K) = ¢ :



Axiom 1: If keK and d4(L,Iuv (K-k))# ¢ , then k isin

every minimal (K/I})-cover of L.

Axiom 2: If M is a minimal (K/I)-~cover of L and
keM -1, and Q is a minimal ((K-k)/(I v k))-cover of

d(L, k), then Q is a minimal (K/I)-cover of L .

Axiom 3: If k, k'eJ =K -1, with (k) # W (k') and
if (L, d(L,Tu (k) , Iv (k") =¢ andif

c(1, IIJ(k'))‘é c(1, IIJ(k)) , then every minimal
((K-IIJ(k))/I)-cov,er of L _is also a minimal (K/l)-cover
of L., and there exists at least one minimal

((K-HJ(k))/I) -cover of L .
Axiom 4: Forall LCT, d(L,¢)=¢.

The Extraction Algorithm

Given I, KCS and L CT, the following
algorithm defines an object M(L, K/I} ; the theorems
following the algorithm show that this is the desired

minimum cover under appropriate conditions. We assume,
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for expositional convenience, that a linear ordering is

givenon K.

START: goto 1.
1. Let J=K -1, does there exist a pair
(k, k') eJ X J with HJ(k) # IIJ(k') , but with
i -
d(d(L, d(L, I v I (Kk))), I v T (k") =9
and with c(I, IIJ(k’)) < (1, IIJ(k)) ? If yes, go to

2; if no, goto 3.

2. Let (k,k') be the least such pair (under the
lexicographical ordering of K XK induced by
the linear ordering on K ), then take

M(L, K/I) = M(L, (K-IL(K)}/1) .

3. Does there exist any element keK -1 such that
d(L,I v (K-k) # ¢ ?

If yes, goto 4; if no, goto 5.

4, Let k be the first such element (under the linear
ordering on K). If d(L,Iu k)= ¢ , then take

M(LLK/I) =1Iuk
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and stop; otherwise, take

5. - Pick keK (say the first element) and compute
A = M(4(L, k), (K-k)/(I u k))
and B = M(L, (K-K)/I) . If c¥{A) > c*(B), then
take M(L,K/I)= B ; if c*B) 2 c*(A), then take

M(L,K/I) = A.

Theorem 2.1: If I, KCS and L CT such that

dL,1uK)=¢, but d(L,I)#¢, K is finite, and
Axioms A.1, A.2, A.3, and A. 4 hold, then the result
M(L, K/I) of the extraction algorithm is a minimal

(K/1)~cover of L.

Proof: We proceed by induction on the size (number of
elements in) K.

Say that K contains n =1 elements so K = {k} .
Since, by assumption d(L,I) # ¢ , itis clear that I v {k}
is the minimal (K/I)-cover of L . Now consider the

application of the algorithm. Since K = {k}, itis clear
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that T = {{k}} and that step 1l carries us to step 3. But

since K~k =¢ , we then have

d(d(L, d(L,I v k), Ivuv (K-k)) = d(d(L, ¢), 1 u ¢) =

d(L,I) by A. 4
# ¢ by theorem statement,
Thus we go to step 4 where, since d(L,Iuvk)=¢, we
stop with M(L,K/I) = I v {k} , which is just what we
desired. |

Assume now that the result has been proved for
all I, K, and ‘L. where K has n (n21) or fewer
elements., Consider I, K, and L where Khas n+1

elements. We consider three cases:

Case 1: There exist k, k'eJ = K -1 satisfying A.3.

That is, IIJ(k) # HJ(k') , but
d(d(L, d(L, I v I (K))), Tu T (k) = ¢

and cfl, T, (k") £ e(l, I (K) . Then, by A.3, there exists

a minimal ((K-HJ(k))/I)—cover M of L whichis a mini-
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mal (K/I)-cover of L . But, turning to the algorithm
we see then that step 1 will carry us to step 2 (gince the

desired k, k'eJ exist). Now step 2 makes
M(L, K/I) = M(L, (K-IIJ(k))/I) .

But, since K-'IIJ(k) is smaller than K, it follows
from the induction hypothesis, that M(L, (K-TL (N /1) is
a minimal ((K—]’IJ(k))/I)-cover of L, and thus, by the

above M(L, K/I) is a minimal (K/I)=-cover of L.

Case 2: There do not exist k , k'eK -1 satisfying A.3

“but there exists keK satisfying A.1l; thatis,
d(d(L, &(L,1 v K)), I u (K-K) £ ¢ .

Then in this case we know, by A.1l, that k is in every
minimal (K/I)-cover M of L . But then Axiom A.2
applies, that is, if Q is any minimal
((K<k)/I u k)~cover of d(L), then Q 1is a minimal

(K/I}=-cover of L . But, turning to the algorithm, we see
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that step 1 carries us to step 3 which will carry us to
step 4 (since keK exists satisfying A.2). Now step

4 makes

M(L, K/I) = M({d(L, k), (K=k)/{I v k)) .

But since K - k is smaller than K , it follows from
the induction hypothesis that M(d(L, k), (K-k)/(I u k)) is
a minimal ((K-k)/{I v k})-cover of d4(L, k), and thus,
by the above, M(L, K/I) is a minimal (K/I)-cover of

L.

~Case 3: There do not exist k, k'eK -1 satisfying

A.3 or A.l. Then cleaizly, if we pick keK, then

either there exists a minimal (K/I}~cover M of L
including k or there does not. If a minimal (K/I)-cover
M exists with keM , then, by A.2, every ((K-k)/Iu k)~
cover of d(L,k) is a minimal (K/I)-cover of L, On

the other hand, if no such migimal (K/I)=cover exists,
then there must exist a minimal (K/I)-cover M with

k¢M . (Note that since A.1 does not hold, there exist
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(K=k/I)=covers of L .) But then this cover M is clearly
a ((K-k)/I)-cover of L . Now, turning to the algorithm,
we see that step 1 carries us to step 3 which carries us to

step 5. But then we take M(L, K) to be the cheapér of

>
"

M(4(L, k), ((K-k)/(I u k))

and

o}
]

M(L, (K-k)/I) .

But since K - k is smaller than K, it follows from the
induction hypothesis that these are the desired minimal
covers,

Since Case 3 is essentially an exhaustive algorithm,
it is clear that these three cases cover all possibilities
and thus it follows, by induction, that the algorithm

always produces a minimal cover. Q. E.D.

Corollary 2.2: If KCS and LCT suchthat d(L,K) =¢,

L#¢, K isfinite, and Axioms A.1l, A.2, A.3 and A.4 hold,
then the result M(L, K/¢) of the extraction algorithm is a

minimal K-cover of L. .
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Proof: Follows immediately from the preceding theorem

by taking I=¢. Q.E.D.



3. ALTERNATIVE AXIOMS

In this section we will present some alternative
axioms for the extraction algorithm. These axioms will
imp;ly the axioms given in the preceding section, but they
are not strictly equivalent to them (i.e., they ar; not
implied by the earlier axioms). In the first part of the
section, we present axioms for the '"difference function"
d. These axioms are sufficient to prove Axioms A.1l,
A.2, and A. 4 of the preceding section (indeed, they
include Axiom A. 4). In the second part of the section,

we present axioms on the cost function and employ them

to prove Axiom A. 3.

Axioms for the Difference Function

We start by defining a relation = on P(T).

Given L, L'CT we write L =L' if and only if

d(L, L") = (L', L) = ¢ .

Intuitively, L =L' means are two representations of

the same thing--i. e., it will be the case that anything
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which covers L also covers L' and vice versa. Note
that = is, by definition, a symmetric relation, but
until we impose further properties on d, it is not
necessarily either reflexive or transitive and thus the
above intuitive interpretation is dependent on the ;xioms
given for d.

The Difference Axioms (or D-axioms) are as

follows:

Axiom D.1l: Forall LCT, d(L,¢) = L. (note, this is

the same as Axiom A. 4. )

Axiom D.2: Forall KGCTuS, dg,K) =¢.

Axiom D.3: Forall LCT and K, Kt CSu T,

d(L, K v K") = d(d(L,K),K') .

Axiom D.4: Forall L, KCS, and JCTu S,

d(L,K) = d(K,J) = ¢

implies d(L,J) = ¢ .
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These axioms can be intuitively interpreted as
follows: Axiom D.1 says that '""subtracting'' nothing
(i. e., . ¢ ) from a subset LCT gives us L (so ¢
serves as a zero). Axiom”’ D 2 says that subtracting
something from nothing still results in nothing. Axiom
D.3 says (subject to our earlier interpretation of =)
t.hat we can break up the taking of the difference into a
series of differences. Axiom D. 4 says that the covering
relation is transitive; i.e., it says thatif K covers L
and J covers K , then J covers L.

Given these axioms, we can now prove that the

relation = has the desired properties.

Proposition 3 1: If Axiom D. 4 holds and for every

L CT there exists L' suchthat L. = L' , then the

relation = is an equivalence relation.

Proof: We already know that = is symmetric from its
definition. That it is transitive follows easily from D. 4

forif L.,L_, L. CT and L =L, L_ =L then we

1’2 3 1 2 2 3’

have
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d(Ll’ LZ) = d(LZ’ Ll) = d(LZ’ L3) = d(L3, Lz)

il
S

it

1—L3o

Finally, from the assumption that for each L CT there

so, by D. 4, d(Ll’ L3) = d(/LB., Ll) =¢, e, L
exists L'CS suchthat L' = L, we have
4L,L"Y=d(L',L)=¢, so, by D.4, d(L,L)=¢, ie.,

L=1. Q. E.D.

Corollary 3.2: If L, L'CT, KCS and L = L', then

K covers L (i.e., 4(L,K)=¢ ) implies K covers L',

Proof: This is an immediate consequence of the transi-

tivity of =, Q. E.D.

The following simple result is also important.

Proposition 3.3: If D.1 and D.2 holdandif L CT,

then L

¢ ifandonlyif L =¢.

Proof: If L =¢ then d(L,¢) = L=¢ by D.1, and

d(¢,L)=¢, by D.2, hence L = ¢ by definition.
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Conversely, if L = ¢ , then by the definition of

=, d(L,¢)=¢, butby D.1, d(L,¢)= L, thus

Theorem 3. 4: The D-axioms imply Axiom A.l; indeed,

if keK and d(L,Iu (K-k))# ¢ then k is in every

(K/I)=cover of L .

Proof: Say there exists a (K/I)-cover C of L which
does not contain k. Then, perforce, CCK =~k . Let

J=1u(K-k), then

d{L,I v (K-k)) = d(L, J)

d(L, C u (I-C)

it

=d(d4(L, C), J-C) by D.3
=d(¢, J-C) by choice of C
=¢ by D. 2.

But, by assumption, d4d(L,1u (K-k)) # ¢ , so we have a

contradiction unless no such (K/1)-cover C exists. Q. E.D.
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Theorem 3. 5: The D-axioms imply Axioms A.2; thatis,

if M is a minimal (K/I)-cover of L. and keM -1, and
Q is a minimal ((K-k)/(I u k))-cover of d(L, k), then
the D-axioms imply that Q is a minimal (K/I)-cover of

L .

Proof: We see first that Q is a (K/I)-cover of L since

¢ = d(d(L, k), Q) by choice of Q
= d(L,Qu k) by D.3
= d4d(L, Q) since, by definition,
' keQ .

But also we see that M is a ((K-k)/(I u k))-cover of

d(L, k) since IukCM and

d(d(L, k), M)

= d(L,Mu k) by D.3
= 4(L,M) = ¢ by definition of
M, keM.

)

Thus, the fact that Q is a minimal ((K-k)/(I v k))-cover
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of d(L, k) implies that c*(Q) € ¢%(M) and so, since Q
is a (K/I)-cover of L of cost less~-than-or-equal to that
of a minimal (K/I)-cover of L, we see that Q must

also be a minimal (K/I)-cover of L . Q. E.D.
We will need the following lemama:

Lemma 3.6: If C is (K/I)-cover of L., XCC -1 and

YCK -1 suchthat XNY =¢ and

a(d(L, d(L,1u X)), T u Y) = ¢

then C'= (C-X)u Y is alsoa (K/I)-cover of L.

Proof: Let N=C - X, then

d(L,Nu X)=d(L,C)=¢ .

But, by D.3,

]

d(L,Nu X) = d(d(L,,IuX), N-1I). (1)
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Now, by assumption,

-
"

d(d(L,d(L,Iu X)), TuY)

= d(L,I1vYudL,IvuX) by D.3

d(d(L,IuY), d(L,I1u X)) by D.3.

Then, combining this with (1), using D. 4, we have

¢ = d{d(L,IvY), N-I)
= d(L,Iv Y u (N-I)) by D.3
= d4(L,NuY)

= 4(L, (C-X)u Y) = d(L,C" .

Hence, C' isa (K/I)-cover of L.

Axioms on Cost

Axiom C.1l: Forall K, K', ICS, wi‘th KnK'=9¢,

c(l, Ku K') = c(I,K) + c(I u K,K) .

]
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Axiom C.2: Forall K, K!', ICS with KnK'=9¢,

c(I,K) + (I, K') ® ¢(I, K u K') .

Axiom C.3: Given keKCS and X, YCK - I[K(k) , then

for all Z C UK(k) ,

c(X,2) = c(Y, Z) = cl¢, Z) .

Axiom C.4: Forall I, KCS, if k, k'eJ = K -1 with

T (k) # M (k') and such that d(d(L, d(L,1 v M (K)),1u T (k") = ¢
and c(I, TIJ(k')) < (1, ﬁJ(k)) , then for every X C T_TJ(k)

there exists Y C 1 (k') such that d4(d(L,d(L,Iu X)), IuY)=9¢

J
and c(I,Y) € ¢(I,X) .

These axioms may be interpreted as follows:
Axiom C.1l says, in effect, that the cost of a subset of
S (with respect to I CS) does not depend on the order
in which we choose the subset. Axiom C.2 says that
the cost of a subset of S is npt greater than the sum of
the costs of its elements. (Note. that this assumption

restricts us in that it forbids cost functions that contain
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a penalty for, say, fan-out over a certain amount.) Axiom

C.3 says that all cost reductions (situations where
c(M, k) € c(¢p,k), for some M CS) take place with
respect to the bloci(s of thé partition II. The final
axiom, C.4, is the most complex. The idea here is
that if HJ(k‘) will cover as much as IIJ(k) and at no
greater cost, then for each _subset X of TIJ(k) we can
find a subset Y of IIJ,(k') which covers everything
covered by X and which costs no more than X, (all

this, of course, being with respect to the given I and L’).

Theorem 3.7: The D and C axioms together imply

Axiom A.3; thatis, if I, KCS, LCT, and k, k'eJ =

K-1, with T(k) # n'J(i{') ,
d(d(L, A(L,T v TN, Tu M (k) = ¢

and c(I, IIJ(k’)) < (1, IIJ(k)) , then there exists a minimal
(K = T[J(k))/l)—cover of L anq every ((-K - IIJ(k))/I)-

cover of L isa (K/I)-cover of L.
3
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Proof: Clearly it suffices to show that there is at least
one ((K - IIJ_(k))/I) ~-cover of L which is a minimal

(K/1) -cover. To show that such a covei‘ exists, we will
show that under the conditions of the theorem, we can
transform any (K/I)=-cover C of L .'into a corrésponding

(K - IIJ(k))/I)-cover Q of L with c¢*Q) £ c*(C) .

Let C be any (fixed) (K/I)-cover of L . Let
X=0Cn T[J(k) . By C.4 we know there exists Y C TIJ(k')

such that

AL, YL, Tu X)), LuY)=¢

and c(I,Y) € ¢(I,X). Nowtake Q= (C-X)uY.
By Lemma 3. 6 we know that Q is a ((K - IIJ(k))/I)-
cover of L ; it remains to show that c*(Q) ¢ c*(C) .

Now, by C.1

c¥Q) = clp,I) +c(I,Y) +c(IuY, C = (Iu X)),

and c*¥(C) = cl¢,I) + c(I, X) +‘c(l uX, C-(1LuX).
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Now c(I,Y) € c(I,X) by the above. Thus it remains
only to compare the final terms. Let W= (C -~ (I u X))nHJ(k') s

and let U= (C - (I1uX)) - HJ(k') , then

cluY, C-(IuX)=cluY,U)+cluYulU,Ww) )
and
c(lIuX, C=(1uX))

= c(IluX,U) +c(luXuvulU,W) by C.1

1}

cluX,U) +c(luU,W) by C.3.(2)

Now, by C.3, c{IuX,U)=c(luY,U); thus it remains only

to compare the final terms of (1) and (2). But

cIulU, YuW)=c(IuU,Y) +cIuUu¥Y, W) by C.1°

and cIuU, YuW)€cIuU,Y)+clIuvlU,W) by C.2,
which gives us

cluUuY, W4 c(ITulU,W)

)

just as desired in order to make (2) less~-than-or-equal

(1). Q. E.D.
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To end this section we point out two simple re=-
finements which can be made in the extraction algorithm.

In the extraction algorithm as given in Section 2,
step 1. is the main means for rapidly reducing the size
of K. Basically, the rule in step 1 is to throw away all
elements of K which cover some part of L. -which can
be covered more cheaply by other elements of K. Our
purpose here is to prove the intuitively obvious extension
of this rule to the effect that if an element of K covers
nothing in L (not already covered by I) then it can be

thrown out regardless of its cost.

Proposition 3. 8. If keK -1 but I covers k with respect

to L, then there exists a minimal (K/I)-cover M .of

L with ké M.
Proof: Say Q is a minimal (K/I)-cover of L and
keQ. Let Q=IuRuk (I,R, k disjoint). Since I

covers k with respect to L, this means

d(d(L, d(L, k)),I) = ¢ . (1)
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But since Q is a (K/I)-—cover of L., we have

d(L, I v Rvuk)

©
H

d(d(L, k), I v R) by D.3.  (2)

But from (1) we have

¢ = d(d(L, &(L, K), 1) D. 3
= d(L,Iu d4(L, k)) D.3
= 4(d(L, 1), (L, K) = ¢ (3)

So, combining (2) and (3), using D. 4, we get

d(d(L,I), I v R)

©
1

d(L, IuvuIuR)

4(L, M)

so M isa (K/I)-cover of L, but

C*#(Q) = C(p, M) + C(M, k) by C.1

w

C(¢, M) by definition C.
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Hence, M must be a minimal (K/I)-cover of L. Q. E.D.

In the extraction algorithm, as given in Section 2,
step 4 picks out only one element at a time satisfying the
conditions given in step 3. However, ‘the one-at-a-time

instruction is not central to the axiom and, indeed, we have:

Proposition 3. 9: If the D-axioms hold, then we can re-

place step 4 of the extraction algorithm with 4'. Let E
be the set of all such elements (i.e., keK, d(L,Iu (K-k)) £ ¢).
If d(L,Iv E) = ¢ then take
M(L,K/I) =Iu E
and stop; otherwise, take

M(L; K/I) = M(d(L, E), (K-E)/(Iuv E)) .

Proof: Inspection of the proof of Theorem 3.5 will show

that it can be directly generalized to read:
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"If M is a minimal (K/I)-cover of L and
XcM-1, and Q is a minimal ((K-X)/(I v X))-
cover of d(L,X), then thg D-axioms imply that
Q i{s a minimal (K’/I).-cover of L."

(The proof is identical to that of 3.5 except that X re-

places k throughout).

The desired result now follows directly from 3. 4
and the above modification of 3.5, for by 3. 4 we know that
E must be a subset of every minimal (K/I)-cover and
from the above modification of 3.5 we know that (by taking

X = E) we get that

M(d(L, E), (K-E)/(Iu E))

is thus a minimal (K/I)-cover of L. . Q. E.D.
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4, EXAMPLES

We will now give two, rather sketchy, examples
of the above extraction algorithm, the first being sjngle
output, two-level AND-OR circuit minimization, the
second being multiple-output, two-level AND-OR circuit
minimization. The examples are presented without a proof
of their validity (i.e., that the given d, and c satisfy
the axioms). However, the validity follows easily from
the material in [R-1] (especially if one considers it in
terms of the geometric interpretation of the #-algorithm).

/

4,1 Single Output Case

It has been shown by Roth that the problem of
designing minimal cost two-level AND-~OR circuits can
be reduced to a cubical covering problem [R-1] [R-2].
This problem is exactly of the type to which the extraction
algorithm given in this paper can be applied. For a problem

with n input variables we get that

S and T are the set of all faces of the n-cube;

5y
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1. is a cover of the set of vertices of the n-cube
which correspond to those conditions for

which the circuit is to be ON ;

M

K is a cocycle cover of L (oAr, if there i3 a set
D of DON'T-CARE vertices, then K is

‘a cocycle cover of L uD);

d is the sharp-product (#-product) for covers

[R-1];

c the cost, can be chosen in many ways, the most
common beiﬁg to make the cost of a k-cube
being (n-k)+1 (this corresponds to the
cost of a circuit being directly proportional

to the number of inputs to logical blocks);

=K.

4.2 Multiple Output Case

A more interesting covering problem, and one
with a nontrivial partition I, arises in the design of

multiple output two-level AND-OR circuits.
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In the case that there are n inputs and m outputs

we have that

s=T={0,1,%X}" x{,....,m}.

Let a typical element of S r T be denoted (q,1i)

(qe {0,1,X}", te{l,....,m}) .

L= k)?jl L1 where, for 1 =1,...,m,, Li is

a set
L, = {(q1)ieen, (a0 1))
i 1’ 3ecey qp(i)o
i i .
such that Ci = {ql,..., qp(i)} constitutes a cover

of the on-array of the ith output.

K is the smallest set containing the cocycle cover
of each set Ci (see above) and such that if {(q, i),
(q'.J)e¢K with i#j and q[ ]|q'.#¢ then

(a[1q,i) and (q []q'j) arebothin K.

d is the evident extension of the sharp-product

for covers which arises from the rule
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¢ if q#fq' = ¢,

(a#q',1) if i=j, and q#q' # ¢

da( (q,1) , (9" J§) )=
(a, 1) if 1473,

II is the partition which arises from the equiva-
lence relation ~ (on K ) such that

(@, 1) =(q", )

if and only if q=q'.

¢ is such that for each (q,i)eK, i‘f q isa
k~cube, then
(¢, (@, 1)) = (n-K) + 1
and, if In IIJ((q, iY)# ¢ nd (q,i)¢ 1), then
c(l, {q,i)) = 1.
This corresponds to the cost of 2 circuit again
being directly proportional to the number of inputs
to logical blocks. The first time we use {(q,1)
we have to pay for its inputs (n~k of them), and its
input to the OR of the ith output; but after that
(since we already have the block for q ), we only

have to pay for its input to the output OR .

i=]j
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This multiple output algorithm is closely akin to
the multiple output algorithm developed under this contract
by Paul Roth. His algorithm, however, introduces a far
more ;ompact and conveniént manner for handling the sets
IIJ(<q, i)) (i. e., in his approach, eacﬁ such set is a‘éingular

cube).
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0. INTRODUCTION
0.1

Roth's Cubical Notation and calculus of cubes were
originally developed [ R-1] for application in the minimiz-
‘ation of single output, two-level AND~-OR switching cir-
cuits. In subsequent papers [R-W-1] [R-K], Roth and
others applied this theory to synthesizing other forms of
combinational circuits but without introducing a direct
cubical notation for such circuits. However, in 1967,
Roth introduced an informal cubical notation for repre-
senting arbitrary combinational circuits [R-2}, and in
1968 the authors developeé a semiformal cubical notation
for multiple-output, two-level AND-OR circuits [R-W-'Z] .
This variety of informal, semiformal and formal notations
led the authors to consider the possibility of producing
some kind of formal mathematical framework which would
encompass all these diverse ~notat;ions and which would
permit the development of a gene'ral calculus for their
manipulation. The hope was, and is, that the development
of such a system would lead to rigorous and effective tech-

niques for the analysis and synthesis of circuits. This



paper presents our results to date on the development of
such a general framework.

In our initial attempts to produce a suitable frame-
work, we tried to develop a suitable set of axioms which
concerned the structures in which we Were interested.
None of these axiomatic approaches was particularly
succesgsful, for we found that we wanted to be able to deal
with a great variety of structures and that further research
would result in the discovery of even more structures.
What we needed was a rather general approach that would
allow us to build up '"any' type of mathematical structure
in a uniform manner. We turned then to the search for
such a general approach and the result was the calculus
of a-objects given in the first section of this paper. The
calculus of a-objects is essentially a means (a formal
procedure) for building up recursive definitions of classes
qf strings of symbols. What we present here is a specific
such calculus which builds up classes of strings corre-
sponding to the entities (truth tables, components, cir-
cuits, etc.) which make up the subject matter of switching

theory and which, at the same time, provides means for



defining all the necessary operations and algorithms on,
and relationships between, such entities.

The calculus of a-objects, presented in the first
section of this paper, is intended to be more than just a
notation, or language, for writing dov-vn the definitions of
the entities and operations in which we aré interested. A
central idea here is to make the definitions, as well as the
things they serve to define, into well defined mathematical
objects. The idea of formalizing definitions is, of course,
not new; our approach here bears at least a superficial
resemblance 'to’ Smullyan's formal systems ['S']. However,
where Smullyan's interest was primarily in déveloping a
theory of formal systems, our interest is directed more to
developing a calculus of definitions which is “applica‘tion
oriented. ' That is, we are not particularly interested in
an alternative development of recursive function theory.
Rather, we wish to develop powerful means for writing
i'igorous definitions of new structures and for proving
results concerning them. In this paper, in keeping with its
early position in the development, the emphasis is on the

application to setting up the basic definitions for a formal



switching theory rather than in using the calculus for the
development of theorems concerning this theory.

Using the calculus of a-objects, as we develop it
here, we rapidly reach a point at which fairly complex
definitions and algorithms can be quité easily written
down in a completely rigorous manner. The penalty we
pay for this convenience is that we start from a formalism
that is, at best, difficult for the uninitiated to relate to
his prior knowledge of switching theory or Roth's calculus
of cubes. For this reason, we give the second part of
this introduction over to an informal presentation of a
version of Roth"s informal notation with examples,and at
the end of the introduction, we present a somewhat infor-
mal overview of our new notation using the same examples.

In Section 1 of this paper we present the calculus of
a-objects. That is, we present our formal system for de-
fining classes of strings. The material in this section,
‘except for the examples, is presented without reference
to our intended switching theory applications. In Section 2
of the paper, we employ the t:;-object calculus to develop

a selection of the basic definitions needed for a rigorous



switching theory. While the material in Section 2 goes
as far as to define components, circuits, and presents
a definition-algorithm for the analysis of circuits, it is
prelixfzinary in nature. We anticipate that further study
will result in both a shorter and a more powerful set of

basic definitions.

0.2

Informally, we think of a combinational circuit as
being a network of (logical) components with no feedback;
that is, thére is no signal path from an output of a com-
ponent back to one of its input-s. Each component is, in
turn, a ‘'black box'" with n inputs and m outputs which
accepts binary input signals and responds by putting out
binary output signals. An example of (the block diagram
of) such a circuit is shown in Figure 1. In a network of
components, those component inputs,which are not fed by
the outputs of any other component, are called the primary
inputs of the circuit; and those component outputs, which
do not feed the inputs of any ot.her components, are called

primary outputs. We assume that each line in a circuit
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Figure 1 Example of a block diagram of a circuit.



has a _lg_l_g_g_l_associa.ted with it (a name or number);
however, certain primary inputs may have the same
label (may be identified as being fed by a common source
of input signals) and we will also give the same label to
(identify) all lines emanating from a.njr given component
output.

Now, any component or circuit realizes some
binary function; that is, the relationship between its in-
put and output signals is a binary function. This function
can, of course, be represented by a table of 1's and 0's.
However, it is much more convenient to represent it by
a table of 1's, 0's, and X's, where the X.'s are used,
as explained below, to reduce the size of the table. Such
a table is called an Input-butput (or Truth) Table. To
help explain this informal notation, we present in Figure 2
the input-output table for the circuit given in Figure l. A
1 or 0 in a row of the table means that the signal on the
corresponding line (input or output) isa 1 or 0,
respectively. The X's have different meanings depend-
ing on whether they are in the input (left) or output (right)

side of the table. In the input part, an X means that the



output does not depend on whether that inputisa 1 or
0 (given that the other input lines are 1 or 0 as indi-
cated)._ Thus, for example, the first line of the table in
Figure 2 can be viewed as an abbreviation for the four

lines

The X's in the output part of a row, on the other hand,
mean that that row does not specify what the output is on
the corresponding output line for the input signal combina-~
tion specified in the input part of the row. Thus, for
example, the fourth row of the table in Figure 2 says
that output line g will have a 1 on it if input lines a, b,
and c have respective input signals 1, 1 and 0, but it
does not say anything about what we should expect on out~

put line h for these input signals. The advantage of
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Figure 2 Input-Output (or Truth) Table for circuit
shown in Figure 1. (using X's in both in-
puts and outputs).



using the X's is, of course, that it often allows for a
much shorter table; indeed, without the use of the X's ,
the input-output table would have to have 64 rather than
14 rows (indeed, with a more judicious use of X's, it
is possible to get the table down 4£o only 11 rows).

Now while the above table gives us the function
felating the input and output signals of a circuit, it does
not tell us anything about the structure of the circuits;
that is, Figure 2 gives us a function, but it does not show
us (as does the block diagram in Figure 1) that it arises
from a circuit with three AND's and two OR's. To do
this, to represent a circui.t in a tabular rather than pic-
torial manner, we can use another form of table, also due
to Roth [R-2]. The basic idea, as shown in Figure 3, is
to form a "matrix" or table-of-tables which has columns
for each input, output and intermediate line of the circuit
and in which each subtable is a description of one of the
components in the circuit. From such a table one can
readily construct the corresponding block diagram. Now
while such a table reduces block diagrams to a standard

form, it is still not a ""mathematical object' in the sense



1 1
X 0
0 0
1 1 1
0 X 0
X o0 0
1 1 1
0 X 0
X 0 0
1 X 1
X 1 1
0 0 0
1 X 1
X 1 1
0 0 0

Figure 3 "Matrix" representation of circuit shown
in Figure 1.



that we can manipulate it in a rigorous manner. However,
it was the consideration of just such circuit-representing
"matrices' that originally prompted this research.

One of the aspects of such a circuit-representing
"matrix'" which stimulated research ié that, given such a
"matrix, ' it is not particularly difficult to produce from
it a table which gives an 'analysis'' of the corresponding
circuit. That is, one can produce a table, such as that
in Figure 4, which shows the various combinations of
signals which can appear on the lines of the circuit. Note
that in Figure 4 we have agaif} used X's. Her.e they
mean (as in the input part of Figure 2) that the corre-
sponding line can have either a 1 or 0 on it when the
other lines are as indicated. (Again, the use of X's
reduces the size of the table, in this case from 64 to
27 lines.)

We have now introduced three kinds of tabular
fepresenta.tions of circuits. It is clear that there must
be definite relationships between the different types of
tables and that these relationships are of an essentially

)

~mathematical nature. However, since the different types
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of tables are '"informal objects, " it is not possible to
build up directly a calculus for their manipulation or
which displays these interrelationships. The reason for
this is .that while we have examples of the different kinds
of tables, we do not have the precise definitions which are
necessary to make mathematical manipulation possible.
We need to be able to describe, or define, the tables in
such a way that we can decide precisely when an '"arbi-
trary table" of 1's, 0's, or X's is one of the kinds of
tables we are interested in. We need precise means by
which to specify the parts of a table; we need to define
basic operations on tables and parts of tables. Our tool

for doing these things will be the a-object calculus.

0.3

The problem of formalizing the above informal
tabular notations is largely one of replacing the tables
w;vith a more readily describable and manipulatable form.
To do this we have taken the rqute of reducing everything
to strings of symbols. The actual set of symbols which

we use in the formal development is the set {0,1,X,o0, (YY)
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however, in this introduction, we shall use some additional
symbols in order 1) to make it easier to relate to the
tabular notation, and 2) to avoid long strings. We pro-
ceed by example.

Consider the following AND-circuit and its input-

output table.

a b a blc
Ll D11
AND
} o x|o
c
X 010

The basic idea of our notation is to represent the table

of such an AND by a string of the following kind:

(({a1)(bl) | (c1))((a0) [ {c0))((bO) [ (c0))) .

(In the actual formal notation, the ''labels' a, b, and
¢ would be strings of 1's, 0's, and X's in angle
brackets ( ( and Y ) and the parentheses and vertical

slashes would be replaced by appropriate configurations
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of brackets.)

Note that in this notation, a row of the matrix
becomes a string (delineated by parentheses) with the
X-entries omitted, and withv' the inputs and outputs sepa-
rated by a vertical slash. Then the component is repre-
sented by a string of such row-representing~strings
delineated angle brackets. If we want to represent the
input-output-(or truth)-table of a circuit, we do it in just

the same way. Thus table 2 is‘represented by the string:

(((a1) (b1) (e1y(at) | (gl)(n1y)
((b0){c1){d1} | (gly(hl}))
((a0)(c1y(aly| (gl)(hl))
(4a1) (b1) (0} | (g1))
((el) (f1) | (n1))

((a0) (<0} | (g0))
((a0)(d0) | (g0))
((p0){c0) | (g0))
((b0)(d0) [ (g0))
({c0){e0) | (hOY)
({c0){£0) | (hO})
((d0)(e0) | (h0})
((20)(£0) | (hO})),
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To represent a circuit (combinational network of
components), it suffices to give a string which is an
appropriate ordering of the strings representing the
individ.ual components. Thus, corresponding to Table 3,

we have the string:

((({al) (b1} | (A1))({a0) | (A0))((bO) | (AO0Y))((cl)(dl) | {(BL))
(c0) | (BOY)((d0) | (BOY))(((el)(f1) | (C1))((e0) | (COY)
({£0) | (COM)(((ALY | (g1 ((BLY | (g1))((A))(BO) | (gO)))
(((B1Y | (h1))((C1Y | (h1))((BOY(COY | (hO}))) .

To represent the analysis~table of a circuit by a
string, we proceed in a manner similar to the above. In
‘ that the notation is rather bulky, we will not write out the
string corresponding to Table 4.

The natural question at this point is: What have
we gained by going to such a string notation? The answer
is that we shall be able to work with these strings in a
rigorous manner. In particular, we shall be able to say
just which strings correspond t; possible components and

¥

circuits and we will be able to present precise rules for,
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say, going from a string representing a circuit to one

representing an analysis table for the same circuit.
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1. THE «-OBJECT CALCULUS

1. 0 Introductory remarks

.In this section we develop the rudiments of the
a-object calculus. What we present isv a formal system
for writing recursive definitions of strings (fihite'se—
quences) of the symbols 0, 1, X, o,’ Y, and (. The
system is formal in that it has a ''grammar, " or pre-
cise set of rules, which effectively define what we mean
by a ''definition'' and there is an accompanying set of
precise rules, the ''semantics, " which (albeit not neces-
sarily effectively) determ'ine'the set of strings ''defined"
by a given ''definition'" or 'string of definitions. "
Inasmuch as the formal aspects of the calculus play only
a minor role in this preliminary paper, the reader can
comprehend the material presented in Section 2 of this
paper without appreciating the formal aspects of the
definitions. That is, in this paper, one can view the
a-object calculus as just a notation.. We wish to point
out, however, that even in this paper, the formal frame-

work assures the completeness of the definitions in the

sense that 1) we have no undefined terms floating around,
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and 2) every definitlion defines a definite class of strings
whether or not it is the one desired.

In Section 1.1 the first four pages are dedicated to
deﬁnj.mg our formal notion of a (''string of') ''definition(s). "
On the fifth page we finally get to the question of the "mean-
ing" of a ''definition; " that is, to the rules which deter-
mine the corresponding class of strings. While this
manner of presentation is well justified mathematically,
it makes it somewhat difficult for the reader to get any
feeling for what is going on; thus we will close these
introductory remarks with an informal description of the
a-object calculus viewed as a notation for writing recur-
sive aefthions.

The basic idea of the a-Object Calculus as a
notation is to provide a simultaneous means for defining
and naming classes of strings on the alphabet 0, 1, X, 0,

Y, and (. The '"names" are important for they allow
us to refer to a class of strings when we are defining
further classes of strings, or when. we have a recursive
definition. It allows us to refer to a given class in build-

ing up its own definition (indeed this self-referral aspect
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is the essence of a recursive definition). A simple
example of such a definition would be the following
definition of the class named, say, "STRINGS-OF--
ONES. "

A L The symbol '1" is in the- class STRIf\TGS-
OF -ONES.

A.2, If A and B are strings in the class
STRINGS-OF-ONES, then their concaten-
ation AB is in the class STRINGS-OF -
ONES.

A.3. No string is in the class STRINGS-OF-ONES
unless its being so follows from A.1land/or A. 2.

As an example of the use of the class STRINGS-OF-ONES
in a further definition, we might define a class ca,lled, say,
BSOBPOBSOO (for "Bracketed Strings Of Bracketed Pairs

Of Bracketed Strings of Oﬁes”).

B1. If A and B are strings in the class of
STRINGS-OF-ONES , then (((A)(B)))
is a string in the class BSOBPOBSOO.

B2. If (A) and (B) are strings in the class
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BSOBPOBSOO, then (AB) is a string in
the class BSOBPOSBSOO.

B. 3, No string is in the class BSOBPOBSOO

| unless its being so follows from B.1
and/or B.2 and the definition of STRINGS-

OF -ONES.

(Examples: (((11)(1111))) and (((11)(11111)}) are in
BSOBPOBSOO by B.1 and the definition of STRINGS-
OF-ONES; and (((lLL){1111}}{(11)(11111))} 1is in

BSOBPOBSOO by the above and B. 2.)

Viewed as a notation, the a-object calculus pro-
vides a notation for writing definitions of the above type
in a uniform and condensed manner. There are four main

notational conventions:

1. Given that we have defined or are defining
a class of strings named, say a, and we
have a string or symbols s standing for a

string (suchas A ande above), then
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we write

al s]
as an abbreviation for ''s is a string in
the class a."  Thus, for example,
STRINGS-OF -ONES [1] means  "the symbol
1 is8 in the class STRINGS-OF-ONES; and
BSOBPOBSOO[ (A)] means '"the string
(A) , consisting of the string (denoted
by the variable) A enclosed in brackets,
ig in thg class BSOBPOBSOO., "
A sequence' czl[ sl] , az[ 82] ,...,an[ en] is
read as a conjunction; i.e., the above would

be read as ' 8, is a string in the class a

1 1’

and 5, is a string in the class Aoypee and
8_ is a string in the class a_."

n n
We ermploy an arrow " —'" to denote the
"jf...then'" part of the sentences in a
definition, and we enclose the whole abbrev-

jated sentence in parentheses. Thus A.2

is written
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(STRINGS-OF-ONES [ A], STRINGS-OF-
ONES [ B] = STRINGS-OF-ONES [ AB]).
The arrow is also used in abbreviating
sentences such as A.l1 where there is no
"if''. Where there is né "if'" nothing is
‘written to the left of the arrow and thus
A.l is abbreviated as
(~ STRINGS-OF -ONES [1]) .
4. Finally, sentences suchas A.3 and B.3
-are omitted. Thus, the above examples of
_ definitions can be rewritten as:
(= STRINGS-OF-ONES [1])
(STRINGS—OF“—ONES [A], STRINGS-OF-ONES [ B] = STRINGS-OF-ONES [ AB]
(STRINGS-OF -ONES [ A], STRINGS-OF-ONES [ B] - BSOBPOBS0O RUENEMW

(BSOBPOBSOO [ (A)], BSOBPOBSOO [ (B)] - BSOBPOBSOO [ (AB}]) .

Some further and important simplifications of the

notation are given in Section 1. 3.
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1.1 Formal presentation of the a-object calculus

Let the symbols 0, 1, X and o (zero, one, ex,

and null) be called primiti\ie-bbjects. We then define

an object to be any string in the smallest set of strings

satisfying the following definition:

1.. all primitive~objects are objects;
2, if x and y are objects, then so is xy ;
3. if x is an object, then so is (x) .

Given two objects © 92 we say they are equal

1’
and write 61 = 62 if and only if they are identical as
strings on the alphabet {0, 1, X, o0, { )} .

We wish now to present a general method for
defining various subclasses of the class of objects. Each
definition will define a class (possibly empty) of objects
’with a given name. If the name is, say, a, we call the.
resulting objects (if any) a-objects.

Let p, q, ¢, 5, t, u, v, w, x, ¥, z, p', @¢',...

]

be called variables. By a formal-term we mean
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1. a variable or an object;

2. if A isa formal terfn, then (A) is a formal
_ term;

3. if A and B are formal terms, then so is fs__g

A formal-~definition of a-objects in terms of

ﬁl, ceey Bn-objects will consist of a (finite) sequence of

formal=expressions of the form

(V[ XLy, [ X0y [X ] = el Y ], .. el Y ])
()

where, for i=1,...,s,yie{a,pl,...,ﬁn}, X is a

formal term, and, for k=1,...,t, each Yk is a

formal=term in which no variable occurs that does not

occur in at least one of the X1 . A formal-expression

will be said to be a basis-expression if v, # a for
i=1...,8; otherwise, it will be called an inductive=~
expression. Each formal-definition will contain at least
one basis-expressibn, and in a formal=definition, all the
basis-expressions will come bgfore the inductive~

expressions. Let D(a, {[31, cees ﬁn}) denote a formal=-
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definition of a~objects in terms of ﬁl, N ﬁn-objects.
Given a formal=-expression such as (1) above, let

YooYy .be the variables which appear in it. By an
assigx;ment of these variables, we mean a map A of

{yl, . ;yn} into the class of all objects; thus, Aly,)
is an object for all i . Uniformly substituting _A_(y})

for A in Xj and Yk for i=1...,n, j=1,...,8,
k=1,...,t. in the given formal expression, we get a

new formal-expression
— ' at
.Yl[el]"“"{s[es]‘ del]’...,a[et]

which we call the A-instance of the original formal-
expression.

We shall als\o find it convenient to be able to speak
of an instance of a formal term. For this we use the same
notions as in the above paragraph. Clearly, every instance
of a formal term is an object. If X is a formal term
and 6 is an object which is an instance of X, then we
say that 0 is of form X.

Given a formal-expression such as (1) above, we
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call yl[ XI] yo s Ys[ Xa] the left-side of the expression,
and of YI] R | Yt] the right-side of the expression.
The u}fmbols a, Bl, coes ﬁn occurring in an expression
are called names.

By a definition-string we mean a (finite) sequence

of formal=definitions such that:

1. No name occurs on the right-side of the formal~
expressions in more than one formal definition;
2. the first definition in the sequence ig
(~plo], Pl1], P[X],P[o]);
3. no name occurs on the left-side of a formal
expression unless it has already occurred on the
right-side of a formal-expression appearing

earlier in the sequence.

It is easy to see that a definition=-string will always

be of the form

h.

D= D(P, §), D(a,, {P}hH, Dla,, {P, al}, e+ Dl , {P, aeeen@
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Taking P = a, we shall now give rules which

0

associate with each a; i=01,...,n in D, a unique

(but possibly empty) class of objects which we then call
the class of ai-objecta (with respect to D). Let
BO= p, andfor i>0, let Bi= {ao,...,ai_l} .

Given D, then for each « the class of

i ?
ai-objec_t_s_ is defined to be the smallest class of objects

such that:
1. If 6 is an object and D(ai, Bi) contains a formal
expression

(—>ai[X1],. ..,ai[ o], ..e,ai[Xs])
then 6 is an ai-object;
2. if D(ai, Bi) contains a formal-expression
(Yl[Xl]’ o e ’YS[XS] - ai[Yl]" .. !ai[Yt])
and there exists an assignment A of the variables
occurring in this expression such that the A-instance
o - ' 1
(Yl[el]l""ys[es] ai[el]!""ai[et])
has the property that Gj. is a yj-object for
j=1,...,8 then, for k=1,,..,t, 61'( is an

ai-object.
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Example:
&= (—P[0], P[1], P[X], P[o])(P[x] ~OBJECT [x])
(OBJECT [x], OBJECT [y] —OBJECT [(x)], OBJECT [xy])

(OBJECT [{((x)(y))] = PAIR [{({(x)}{y))] .

Inspection will show that the class of OBJECT-objects
defined by &£ 1is precisely the class of all objects and
that the class of PAIR-objects is precisely the class of

all objects of the form {((x){y)) .

1. 2 Functions and relations

"Conventional mathematics' deals with sgets,

relations and functigns while we are dealing here only
with objects (,strings) and classes .of objects. Howevér,
we will find it convenient, at least for expository pur=-
poses, to introduce notions analogous to the set theoretic
notions of relation and funcfion. These notions will be
outside our theory in the sense that we will not define them
by means of definition-strings..

- We proceed as follows: First of all, we say that

an object © is a pair if itis of form ((x)(y)) (note that
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%

we have already given a string-definition of PAIR ~objects
which agrees with this informal definition). We then say
that the class of a~objects is a relation if every a-object
is a p;,ir. Finally, we say that the class of a-objects is
a function if, 1) it is a relation, and 2) for a,l.l objects
61, 92, and 93 , if ((91)(92)) and ((91)(63>) are
a-objects, then 92 = 93 .

It is worth noting that we may, of course, for each
a Iinterpret the class of a-objects as a set, or as a predi-
cate. For exarni)le, we later define CIRCUIT~objects.
The classe of these objects is naturally viewed as a set,
but, on the other hand, we can also view it as a predicate
in the sense that if an object is a CIRCUIT~-object (is in
the class, satisfied the definition), then it has the property

of being a circuit.

L. 3 Informal simplifications of the a-object calculus

While it is perfectly possible to present our formal
definitions purely within the formalism given above, it
is clearly to the advantage of both the reader and the

writer to introduce a number of conventions and short cuts
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into the notation. We will now introduce two types of
conventions: First, some which are purely notational

or matters of format, and second, we introduce definition-
schemas; thatis, definitigi'ls with variables running over
the set of clags names as well aﬁ over objects.

As regards notation and format, each formal
definition will be written as a "paragvra,ph" headed by the
name (or names) of the class of objects being defined,
and then followed by the formal-expressions, one~to-a=-
line, which make up the formal definition. 'Furthermore,
the name of the class beiﬁg defined will be deleted from
the right-side of the formal expression. Thus our

Example 1 would appear as

P-objects
(=0,1,X%,0)
OBJECT-objects
(P[x] —x)
(OBJECT[x], OBJECT[y] —(x), xy)

PAIR-ébjects

(OBIECT[{{x) (y))] = {{x){(y))) .
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Since there will be many definitions involving

pairs (or PAIR~-objects), we shall often find it convenient

. 1 2
for ((61)(92)) .

The idea of a definition-gchema is quite simple.

for any objects 0, and 6_ to write ellez or (91[62)

All we mean is a formal-definition which contains vari-
ables standing for names as well as variables standing
for objects. For example, there will be many situations
when we will have deﬁned some class, say the class of
a-objects, and we will want to then define the class of
"all bracketed strings of ‘a-objects,' i.e., the class of
all strings of'tile form (xlx2 cee xn) where all the %
are a-objects. Rather than write out a complete formal-
definition each time this kind of situation arises for a new
choice of @, we write out a general definition schema

as follows:

B-STRING(a) or BSTR(a)
(a[x] —(x))

(B-STRING[(x)], B-STRING[(y)] —(xy)) .
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Given this general definition, we can now define certain
new classes of objects without writing out all the formal
expressions., For example, we can denote the class of
"all bracketed strings of bracketed strings of primitive
objects'" by B-STRING(B-STRING(P)) .

The use of such definition schemas not only cuts
down on the amount that we have to write, but even more
important, it helps to provide a unifying thread in a
definition string by pointing out where different formal
definitions have the same underlying form.

Definition schema-will be particularly useful for
dealing with relations and functions. To begin with, we can
define the notion of the domain and image of a relation or

function a with no trouble at all:

DOMAIN(a) or DOM(a)

(efx] y] =)

IMAGE(a) or IM(a)
(alx| ] —=y) .

)

(Note that DOM(a) and IM(a) are defined for any choice
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of a though these classes will be empty if no a-objects
are pairs; however, we will only use these definitions
when we are dealing with relations or functions.)

The real use of definition schema in connection
with relations and functions will be to extend or "Lft" a
relation or function from one domain to another. We now
_give the definition schema for several such '"lifts'"., These

lifts will prove very valuable later in the paper.

1.4 Three lifts for relations

Let a be a relation, that is, assume every
a-object is of the form x|y . Then the following defini~-
tion schemas define two new relations X(a) and Ofa)
and a new predicate A(a) . These definition schemas
may, of course, be applied to any a whether or not it
is a relation; \however, we are only interested in the
case where o is a relation and, indeed, in the inter-
pretations given with the definition schema, we assume
that « is a relation in which every a-object is of the
form (x) [ (y) (.e., «a i’s a relatién between objects

Y

of the form (z) ).
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a)
Interpretation: Z(«) is the extension of & to the
relation between DOM(a) and BSTR(IM(a)) such
that x| A i=1]...,n are a-objects if and only
if x| (ylyz yn) is a Z(a)-object. However, if
A i=1],...,n, are notobjects of form (z) ,
then the "if' part of the above interpretation may
not hold.

)

(alx] y] =x| (v))

S| (y)] H)lx| (2)] == {y=)) .

O(e)
Interpretation: O(a) is the extension of & to the
relation between BSTR(DOM(a)) and BSTR(IM(a))

a and

such that for DOM(a)~-objects al, EETL

IM(a)~-objects b.,..., bm we have (alaz oo an) |

1

(ble ces bm) is a O(a)-object if and only if
ailbj is an a-object for all i and j. Again

this interpretation assumes that the a, and bi

are always objects of the form (x) .
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O(a)
(Ha)[x|y] — (x) | )
(@[ (x) | v), 0(@)[{z) | y] = (xz) | y)

3. Ala)
Interpretation: A(a) is the predicate consisting
of all BSTR(DOM(a))-objects (a.la.Z .o a.n) such
that ai]aj is an a-object for 1€i< j£€ n,

(Again we agssume each a, is of the form (z)).

i
Ala) ‘
(efx| x] —(x))

(A@(y)], alx| =], Ba)lx] {y)] = (xv)) -

1.5 Lifts for functions

We now introduce a number of lifts for functions
which allow us to extend functions to more complex do-
mains and images. These particular lifts will be of
particular use in Section where they will permit us to
define the analysis of a circuit.in a very succinct and
natural manner. As in the case of the lifts for relations,

we will given an interpretation of these lifts which fits our
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applications rather than the general case where a is

arbitrary.

1. . FZla)
Interpretation: If a is a function of a single vari~
able, that is, if all a-objects are of the form
(x) l (y) , then for DOM(a)-objects CTREETL

and IM(a)-objects b bn’ we have

TREEE
(a3, ... an)l (bjb, ... b 3 isa FZl(a)-object
if and only if ai[ bi is an a-object for i=1,...,n.
Thus a@, ... a is a string of aiguments for a
and blbz oo bn is the corresponding set of values.
FZ1{a)
(alx| y] = (=) | (y))

(FEL@)[(x) [ (7)], FZU@(w) | {z)] =(xw) | {yz)) .

2. F22(a)
Interpretation;: Here « is assumed to be a function
of two arguments; that is, each a-object is assumed
to be of the form (x) (y)! z . The idea of FZ2(a)

is that if all the second arguments (the (y)'s) in



the a-objects are, say, P-objects, then we
wish to replace the second argument by B-STRINGS
_of B-objects and get B-STRINGS as values.
' FZ2(a)
(el (x)(y) | 21 = (x)({y)) (=)
(FE2(@)[(x) () | (2)] FZ2[{x) (v) | {w)] = (x){yv) | (zw)) .
Thus, if we have af (a)<bi>|cij for i=1,...,n,

then we get

Fx2(a)l (a) ((b)(b,)... (b )} | (cjc,...c 3] .

FO2(a)
Interprétation: Given that we have a-objects (a.ibj | Cij)
for i=1,...,n, j=1,...,m, then, we get

(al a.n)(b1 bm) I {cnc:12 cnm)
is an FO2(a) object. Thus, FO2 lifts a function «
to a function ranging over B-strings of the arguments
of a.

(FE2(a)[ xy| 2] = (x)y]|2)

(Foz(e)[ (xyy| (2)], FZ2[uy]| (w)] = (xu)y| (2w)) .
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FIl(a)
Interpretation: If a is say a function of two

arguments, say, a:B XB —B where B is the

class of, say, p-objects, then for any B-STRING(B)

C=b1bz... bn we get

Cla. . (%), %,), %) .0y %)
is in FIl(a).
Fll(a)
(a (x)Cy) | 2] = ((x)Cyy) | 2
(FIe) (x| y], al{y) (2} | W] ~(xz) | w)

FP1l(a)
Interpretation: Given a function a of one argu=-
ment, this lift changes it to a function of one
argument which takes PAIR objects as arguments
and takes the value of a on the first object in the
PAIR as its value.

FP1 (a)

(a[x| y], PAIR[(x| 2)] = (x| 2) | y)
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6. FP2(a)
Interpretation: Same as FP1 only it picks out
the second object in the PAIR.
FP2

(alx| y], PAIR[(2]5)] —(z] 2) | y)

7. INVERT=-ARG(a) or IA(a)
This definition scherﬁa does not give us a lift, but
is useful in producing lifts. What it does is reverse
the order_ of the arguments of a two-argument
function «.

1A(a)

(el (x){y) | 2] = (¥)(x)] 2)
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2. BASIC DEFINITIONS OF SWITCHING THEORY
2.0

Our purpose in the remainder of this paper will
be to write down a definition-string which will contain a
significant subset of the structures, rélations,_ and opera-
tions (functions), which we feel are basic to (combina-
tional) switching theory. The goal of this particular sec-

tion will be to define component and circuit and show how

to analyze a circuit (in terms of our formalism). The
first subsection defines some preliminary structures, the
second subsection defines some basic operations and re-
lations, the third subsection contains the definition of a
partially specified component and circuit, the fourth
subsection gives the definition of completely specified
components and circuits, and the fifth subsection presents

the analysis operation.

2.1 Some basic structures

In this subsection we define the basic structures
of the subject. We start the definition-string. The

classes of objects defined here are generally not of much
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interest in themselves, but they provide a jumping off
point for defining the classes of objects of interest in
switching theory. In terms of the informal notation,
what w'e do here is essentially to define the idea of arbi-
trary tables of 1's, 0's, and X's (i. e., tables not
necessarily having anything to do with circuits)‘ of the

general form of the tables in Figures 2 and 3.

P-objects

(~0,1,X%,3)
10X -objects

(0,1, X)
10~-objects

(+0,1)
OBJECT ~-objects

(P[x] = =x)

(OBJECT [x], OBJECT [y] = (x), xy)
ITEM-objects

(OBJECT [ {x)] -~ (x))
PAIR -object |

(OBJECTI[ ((x){y))] = {({x){y)))
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Notation: We shall often write x|y or (x|y) to
abbreviate ((x){y)) .
~ We turn now to defining the basic concepts employed

in this treatment of switching theory.

CUBE-object

(B-STRING(P)[ x] +x)
(We will not make much use of CUBE-objects in
this paper since we will be using LABELLED-
CUBES (see below); however, the 'traditional"
calculus of cubes can be developed quite easily

from this simple concept. )

LABEIL -object
(B-STRING(IO)[ x] -+ x)
(In the introduction, we used lower case letters

for labels to formalize them by the above strings.)

PRIMITIVE-LABELLED-CUBE-or PL-CUBE-object

(LABEL[ u] - (u0), (ul), (ux})
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LABELLED~CUBE- or L-CUBE-object
(B-STRING(PL-CUBE)[ x] -+ x)
(There is a direct relationship between LABELLED-
CUBES and logical iefms: e.g., if a, b, and c
are labels, then the L-CﬁBE .
((a1) (b0} (eX))
corresponds to the logical expression

ag(ch) = ab .)

LABELLED-COVER- or L-COVER-~-object
(B-STRING(L-CUBE)[ x] ~=x)

(One can think of an L-COVER as a disjunction

of the logical terms corresponding to L-CUBES.)

LABELLED-SINGULAR-CUBE- or LS-CUBE-object

(L-CUBE[x], L-CUBE[y] - (xy)).

In this subsection we introduce a number of rela-
tions and operations which will be employed in the next

subsection to go from the general objects defined in the
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preceding subsection to precise characterizations of the
objects corresponding to components and combinational
circuits. The most important (and most complex) oper-
ation (or function) introdu’c;ed in this subsection is
REDUCTION. Essentially this operation reduces a
labelled cube down to its shortest logical equivalent by
éliminating redundancies and contradictions. Using this
operation we can easily define an ope ration INTERFACE
corresponding exactly with Roth's interface operation
[R-W-2]. REDUCTION will also be used in later
definitions.

The first relation we define is the congruence
relation on CUBES. Intuitively, two CUBES are congru-
ent if they are identical as strings or if both contain fhe

primitive object o (null).

CONGRUENCE- or CONG-objects
(CUBE[u] —u] u)
(CUBE[ (u)] = (ud) | (o), (ou | (5))
{CONG(u[ v] = v|u)
(CONG[ (u) | (v)1, CONG[ (x) | (y)] = (ux) | (vy))

(CONG[ u|v], CONG[v|w] »u|w)
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Notation: Given objects u and v, we shall generally
write u ~v to denote that u|v is a CONG-object.
We now define the negation or complement of the

above operation.

NON-CONGRUENCE- or NCONG -objects
(==(0y | (1), €0 | (XY, (1) | (X))
(CUBE[ (u)] - (0u) [ {0y, (Ou} | (1}, (lu) | (X},
(Lu) | (1), (1u) | €0), (1) | (X},
(Xu) | (X, (Xu) [ (0), (Xu)| (1))
(Plp], Plal, NCONG[ (uy | (v)] = (up)| (va), (pu} | (av))
(NCONG[ u] v] = v]|u)
(CONG[ u| (o)1, 10X[p] - u] (p))
(CONG[ u| (5)], NCONG[u| (v)], NCONG[u| (y}]

=u| {vy))

Notation: Give objects u and v, we shall generally write
u #v to denote that u|v is a NCONG -object.

We turn now to the consideration of LABELLED-
CUBES (L-CUBES). We first define an equivalence oper-

ation of L-CUBES; to wit, two L-CUBES we considered
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to be '"equal' if they are identical as B-STRINGS of
PL-CUBES uptoa reorderit.xg of the constituent
PL-CUBES.
L-CUBE-EQUALITY -STRONG- or LES-objects

(L-CUBE[u] »u/ u)

(L-CUBE[ (x)], L-CUBE[ (y)] =~ (yx) | (xy))

(LES[x|y], LES[y| 2] ~x]| )

(LES[x|y] ~y|=x)

(LES] (x) | (v)], LES[ (w) | (w)] = (xw) [ (yu))

We next define the relation OCCURS (and its
complement). The relation we are expressing is that of

whether or not a given PL-CUBE occurs in a given L-CUBE.

OCCURS-object
(PL-CUBE[ u] -+ u| (u))
(PL-CUBE{ u], L-CUBE[(w)], OCCURS[u] (w)],

L-CUBE[ {x)], L-CUBE[ (y)] =~ul (xw), u| (wy), u| {xwy
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NOT-OCCURS-object
(LABEL[ (w)], LABEL[ (v)], u'#v,10x[p], 10X [ q]
~ (up) | ({va)))
(PL-CUBE][ u’]; L-CUBE[ (v}], L-CUBE[ (w)],

NOT-OCCURS[ u (v)], NOT-OCCURS[u| (w)] =u| (vw))
We can now define the reduction operation.

REDUCTION- or REDUCT -objects
(LABEL[ u] = ((uX)) [ X, ((ul)} | ((ul)), ((u0)) | ((u0)})
(L-CUBE[ (x)], L-CUBE[ y], PL-CUBE[ u}, OCCURS[ u] (x)1,

REDUCT] (x) | y] - {xu) | y)
(L-CUBE[ (x)], L-CUBE[ y], PL-CUBE[ (uX)],
REDUCT (x) | y] = (x(uX)) | y)
(L-CUBE[ (x)], PL-CUBE[ (u0)], OCCURS][ (ul} | (x}]
~ (x(u0}) | 3)
(L-CUBE[ (x)], PL~CUBE[ (ul)], OCCURS[ (u0})| (x}]
~ (x(u1)) [ )
(L-CUBE[ (x)], L-CUBE[(y)], REDUCT[ (x) | (y)], 10[ p],
LABEL[ u], NOT-OCCUR( (up) | (x}] = {xCup)} | {y(up)})
(L-CUBE[ (x)], REDUCT[ (x) | 5], L-CUBE[ y] ~ (xy) | 5)
(L-CUBE[ (x)], REDUCT[ (x) | X], L-CUBE[ (y)],

"REDUCT[ {(y} | z] = {xy) |z, (yx)|=2)
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Note that the above definition also provides an
algorithm for computing the REDUCT of any L-CUBE.

We now define

REDUCED-LABELLED-CUBE- or RL-CUBE-object

\

(L-CUBE[ x], REDUCT[ x| x] = x)

Finally we define the operation INTERFACE- or

INT-object.

(RL-CUBE[ (x)], RL-CUBE[ (y)], REDUCT[ (xy) | z]

= (x){y) | 2)

Given RL-CUBES x and y, we shall often write
xﬂ y for their interface; i.e., for that object z such
that INT[xy|z] . We shall also write [|[xy|z] for

INT|[ xyl z] .

2.3 (Partial) Componehnts and circuits
We are now in a position to give initial definitions

for the concepts of components and (combinational) cir-
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cuits., The definitions we shall give in this subsection
will deal with what we shall call partial-components;

i. e., components whose behavior may not be specified
for all possible combinations of inputlgignals. The notion
of a partial-component suffices for the defining of a gen-
eral concept of a combinational circuit. Certain appli-
cations involving ‘don't-care conditions would seem to
require the use of the notion of partial-components and
partial-circuits; however, in order to provide a straight-
forward concept of the analysis of a circuit, we shall,

in the next two subsectioné, introduce one definition of

a complete-component.

What we wish to do is extract the essential features
of Figure 2 (in order to define components) and Figure 3
(in order to define combinational-cifcuits).

It is convenient to begin by specifying the type of
object which corresponds to a row in a table such as that in
Figure 2. For this purpose, we shall use LABELLED~
SINGULAR -cubes (LS-CUBES). Thus, we use ((al}(bl)[ (cl})

to represent the first row
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of the table for a two-input AND. However, not all
L.S-CUBES will or can be used. First of all, we cannot
employ LS-CUBES suchas ((al) (bl)] (al)) since the
label g occurs both as an input and an output label

and while this may be a way of representing ''feedback, "
it is clearly out of place in a definition of combinational
circuits. Second}y, in order to keep the notation as
compact as possiblé, we will want to restrict ouselves

to LS-CUBES (xy) where both x and y are REDUCED-
LABELLED-CUBES (RL-CUBES). Thus, for the objects
correspon&ing to the rows of the informal representation,

we define

ACYCLIC-REDUCED-LABELLED-SINGULAR-CUBE-~ |

or ARLS-CUBE-objects

LS-CUBE[ ({x)(y)}], REDUCT[ (x) | (x)], REDUCT[ (y) | (y)],

REDUCT( (xy) | 2], LES[ (xy) | 2] = ((x) (y))]

Note that what we have done to assure the desired

acyclicity (no-feedback) is to r\nake use of the fact that if
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x and y have a label in common, then the REDUCT of
(xy) will be shorter than (xy) .

~We are now in a position to define the concept of
a partially specified component. Such a component will
fizfst of all be a B-STRING of ARLS-CUBES. However,
it is again necessary to introduce additional conditions
to insure 1) that there is no feedback, and 2) that the
logical function realized by the component is single
valued. This second requirement corresponds to the
requirement on a table that no two rows specify different
output signals for the sarﬂe input signals. To realize
the desired condition, it suffices to specify the correct
relationship between pairs of ARLS~-CUBES and then
employ a lift (from Section 1} to extend it to B-STRINGS
of ARLS-CUBES. The desired relation on pairs of

ARLS-CUBES is as follows:

PARTIAL-COMPONENT~-CONDITION- or

PCCOND-objects
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(ARLS-CUBE[ x| y], ARLS-CUBE[ u| v]
REDUCT/[ (xv) | z], LES[ (xv) | z]
REDUCT] (uy) | w], LES[ {uy) | w]
Mz (uy | 2], & [el8] ~(x|y)|(a]v)
(ARLS-CUBE[ x| y], ARLS-CUBE[ u| v]
REDUCT[ (xv) | z], LES[ (xv) | 2]
REDUCT[ (uy) | w], LES[ (uy) | w]
MGy (ayl o], #Ls]a], TTL¢y) (v (4], % [e] o]

- x|y (u] v

Using the above, we then define a partial component

as follows:
PARTIAL-COMPONENT- or P-COMP-object
(BSTRING(ARLS-CUBE)[ x], O(PCCOND)| x| x] = x)
Informally, a combinational circuit is just a
collection of components interc.onnected in ;uch a manner

that there is no feedback. To capture this notion within

our formal framework, we define a combinational circuit
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to be a B-STRING of P-COMPS such that, to put it
somewhat informally, the output labels of a P-COMP

in the string only appear as input labels of P-COMPS
appea.1:ing to its right in the string. To capture this
notion in a formal manner, we first define a relation
between ARLS-CUBES and then use a combination of lifts
to produce the desired definition of combinational-circuit.
The actual relation employed tests two things: Given a
pair of ARLS-CUBES, it tests to see 1) tha»t the second
does not "feed back' to the first, and 2) that they have
distinct output labels (this is to insure that ""physically
distinct'" circuits have 'physically distinct" outputs).

The relation is formally written as follows:

COMBINATIONAL~CIRCUIT-CONDITION- or

CC-COND-object

(ARLS-CUBE[x|y], ARLS[ CUBE[ u]| v],
REDUCT[(yv) | z], LES[ (yv) | 2],

REDUCTI (xv) | w], LES[ (xv) | w] ~(x[y) ] (u] v)) .

3
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We then define

PARTIAL-COMBINATIONAL-CIRCUIT - or

PC-CKT-object
(B-STRING(P-COMP)| x], A(O(CC-COND))| x])
Note that the 0O-1lift extends CC-COND to a
relation between P-COMPS and the A-lift extends the

new relation to a predicate on B-STRING(P-COMP).

2.4 Completely specified components and circuits

In the preceding section we defined the class of
objects corresponding to partially specified components
and circuits. In this section/we will give one d'efinition
for completely specified components and circuits (those
for which output signals are specified for every possible
combination of input signals). This definition will be
employed in the next section to define (give an algorithm

for) analyzing such completely specified circuits.

The definition of completely specified circuit given
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in this section will be somewhat stronger than necessary.
That is, the definition will consist of a test which will
recogn_ize as completely specified only those PARTIAL-
COMPONENTS which are o’f"’a. particular form. We
anticipate that a more general de'i;initi&;n will be desirable
in later papers dealing with the synthesis of circuits;
However, the definigion givex} here is sufficient for the
analysis of circuits. Informally speaking, what we ghall
require of a PARTIAL-QOMBINATIONAI_;-CIRCUIT is
that each of its PARTIAL-COMPONENTS correspond to
a table which covers ever;nr possible combination of input
signals and that in each ''row'" of the table the value of
each output be specified (i.e., no X's are to occur on
the right side of the tablé)A.

Let us start by developing the part of the test
which determines if every possible combination of input
gsignals is covered in the table corresponding to a PARTIAL-
COMPONENT. Informally, this means we want to check
to see if the left side of the table contains every possible
input combination under the interpretation given in the

3

introduction of this paper. Consider the left side of the
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table corresponding to a PAR'I‘IAL-COMI.’ONENT. Under
the rﬁle (given in the introduction), the X's in this part
of the table can be replaced by both 1l's and 0's and if
all pos.sible such replacemé;ifs were made, the new table
(with no X's ) would be the com'plete-listing of input
signal combinations for which the operation of the circuit
is specified. Clearly, if there are many inputs, such an
expansion of the table is imé;‘actical (for 20 inputs such
a listing would contain about one million éntries). To
avoid such an expansion, we employ the #=-product
(sharp-product) develope;'d by Roth [R-1]. First, we
represent the left side of the table corresponding to a

PARTIAL-COMPONENT by an

RL-COVER

(B-STRING(RL-CUBE)[ u] »~u) .

We then define the #-product on such RL-COVERS. As
can be seen (by reference to [R-1]), such an RL-COVER
u covers every possible input combination only if

X #u=5. We now turn to the job of defining the
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#-product within our formal system.
Since the #-product will introduce 6 values,
we will need the following trivial generalization of

RL-COVERS.

RL-NULL-COVER- or RLN-COVER-objects
{(~ (o))
(RL-COVER[ x] - x)

(RLN-COVER[ (x)], RLN-COVER[ (y)] = (xy))

Correspondingly, we will need the following operation

to delete o's from RLN-cubes.

NULL-DELETE- or ND-object
(= (3) [ (3))
(RL-COVER[x] +x]|x)
(RL-COVER[ (x)] - (x0) | (x))
(RLN-COVER] (x)], RLN-COVER[ (y})]
ND[ (xy | (3)], NDL(y) | ()] (xy) | (v, Ly [ (o))
(RLN-COVER/[ (x)], RLN-COVER[ (y)]
ND[ (x) | {u)], ND[ {y) | (v}]

RL-COVER[ (u)], RL-COVER[ (v)] —~ <xy) [ (uv))
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To detine the #-product it is convenient to intro-
duce the following operation which permits one to append

a PL-CUBE to every RL-CUBE in an RL-COVER.

APPEND
(RL-CUBE[ (x)],10[ p], LABEL[ y],

NOT-OCCURL (yp) [ (x)], = (yp) [ ()N [ ((x(yp))))
(PL-CUBE[y], RL-COVER][ (x)], RL-COVER[ (u}]

APPEND] (y| (x))| (z)], APPEND[ (y| (u)) | (w)]

- (yl (xu)) | (zw))

The #-product between individual RL-CUBES

(and ©'s ) is then defined as follows:
SHARP-OF~-CUBES- or SHRPC-~-objects

(RL-CUBE][ (x)], RL-CUBE[ (y)], REDUCT[ (xy) | 5]
= ((x){y) | (=)

(RL-CUBE[ u] +5u|35, ud|u)

(LABEL[y]-- (X(y1) [y 0} X(yo)| Cy1Y)

(M Ixy| 2], LES[ x| z] = xy]?9)
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(SHRPC[ (x)(y) | 2], LABEL[ u],, 10[ w],
RL-CUBE[ (x{uw))], RL-CUBE[ (y{uw))}],
. APPEND( (uw)(z) | (v)] = ({x{uw)) {y{uw)) | v))
(SHRPC[ (x)(y) | z] /RL-COVER[ (z)], LABEL[ u],
NOT-OCCUR][ (u0y | <xy)] , NOT-OCCUR] (ul) | (xy)]'
= ((x) (y (ul)) [ 2(x(u0))), ((x)(y (u0)) | 2(x(ul)}))
(SHRPC[ (x)(y)|s], LABEL[ u],
NOT-OCCUR[' (u0) | (xy)], NOT-OCCURJ (ul) | (xy)]

= (=) ¢y (uo)) | (e(ul)), ((x(dy (ut)) | (x(u0)))

The above #-product can now be lifted to an operation

on RL.-COVERS as follows:

SHARP-OF-COVERS- or SHCOV -objects

(IA(FZ2(IA(SHRPO)) (y)x| (z)], ND[ {z) | (w)] = {y)(x) | {(w))

(sHCOV[ (x){y) | {z)], RLN-CUBE[ u], SHCOV[ (2(u)| (w)]

= {x) (yu) | (w))

Note: The definition schema IA is employed here in order

to arrange the variables in the desired order to employ FX2
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and then to rearrange them so as to have ‘S‘HCOV[xyl z]
correspond to x #y=1z.

The above definitions provide the machinery
necessary for the first partc;f the test. We turn now to
setting up the machinery for the ‘secona part o.f the test-~
for checking that there '""are no X's on the right side of
the table. " Our procedﬁre here is to check that the
LABELS are the same on the. "right side'" of every
ARLS-CUBE in the PARTIAL-COMPONENT. To do this,

we define the following types of objects:
LABEL-EXTRACT- or LE-object
(PL-CUBE[ ((x)y5] - (x))
The above will extract the label from a PL-CUBE. We
can lift it to extract the LABELS from the right side of

an RL-CUBE as follows:

OUTPUTS-RL-CUBE- or OAC-object

A}
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(RL-CUBE[ x], FZULE) x| u] =+ x| u)
Next, we can define equality of B-STRINGS of LABELS.

EQUALITY -LABEL-STRING- or ELS-object
(B-STRING(LABEL) u] +u|u)
(B-STRING(LABEL)[ (u}] , B-STRING(LABELJ)[ (v)]

= (uv) | (vu))
(ELS[u]| v], ELS[ v| w] = u| w, v| u)

Finally, defining the function

ID-object

(OBJECT[u] > u]u)

We can now put these definitions together and

define:

COMPLETELY -SPEGIFIED-COMPONENT - or CS-COMP
(P-COMP[ u], FZI(FP2(LE))[ u| v], O(ELS[ x| x],

FEUFPUID))[ u| w], SHCOV[(X)w] (5)] )
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Then we also get:

COMPLETELY-SPECIFIED-CIRCUIT- or CS5-CKT

(B-STRING(CS-COMP)[ x], A(O(CC-COND))| x] = x)

directly from the definition of PC-~CKT.

2.5 The a.nalysis of circuits

Given all the apparatus now at our command, it is
very easy to present an algorithm for analyzing CS-CKT's.

We first define PAIR-DELETE- or PDEL-objects
(PAIR ((x){y)}] = (=) {9 | {xy))
and from this,

CIRCUIT-SKELETON-object

(PS-CKT[ x], FEUFSUPDEL) x| y] =x[y) .

Note that if x is 2 PS-COMP and CIRCUIT-SKELETON( (x) | y],

then y is (corresponds to) the analysis table of the circuit
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consisting of x alone..

Now we define:

ANALYSIS
(CS-CKT[ x], CIRCUIT-SKELETON[ x| y],

Fu2(Fo([ (W y| z], ND[y| w] »=x[w) .



62

3. CONCLUDING REMARKS

The definitions and algorithms given in the preceed-
ing section serve to illustrate that we can employ the
a-—obje.ct calculus to define the basic entities and opera-
tions of switching theory. It should be clear that the
a-object calculus, as a notation, provides a precise way
to write down the definitions and algorithms that we need.
What we have not shown in this paper is that this approach
provides anything beyond precision and a certain mathe~
matical economy of initial means. In ﬁarticular, we have
not shown.that the a—objeét calculus can be gainfully
employed to facilitate proof of the correctness of defini-
tions, or the validity of algorithms.

It is our contention that the a-object calculus can
be gainfully employed to develop the theory (i.e., theorems
and proof) as well as the definitions and algorithrhs of
switching theory. However, we believe that the most
fruitful approach to this problem is through a study of
the underlying structure of the a-object calculus. Such
a study should lead to precise.notions of ''data structure, "

"definition, " :algorithm, " ”application of algorithms, "
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and should also lead to an associated prm.)f theory. This
would provide a general theory of algorithms and data-
structures of interest in itself and with many applications
includi.ng, of course, the theo'ry'of switching as begun in
this report. In particular, the methods for dealing with
a-objects (and formal definitions and definition strings)
in proofs should provide a uniform and precise approach
for proving the theorems of Qwitching fheory'.
Preliminary research has led a natural general-
ization of the calculus of a-objects to similar calculi
over algebras with finitely many operators and defining
relations. Viewed this way, the a-object calculus of
this paper is defined over a calculus with one binary.
operation (concatenation), one l-ary operation (angle-
bracketing) and four O-ary operations (the constants
0, 1, X, and o ); and with one defining relation (con-
catenation is associative). The more general approach
allows one to deal with problems arising from changes of
notation, the relative power of ditferent notations, and
with the general notions of mathematics, such as function

v

and relation. It also appears to facilitate the application
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of the results of recursive function theory.to the calculi
and to the problems (decidable or undecidable) concerned
with the optimization and classification of algorithms.
This is relevant to the problems of proving the validity

of algorithms as the form (or classifi;:ation) of an
algorithm (or formal definition) is closely connected with
what can be proved, or how something can be proved, about
that algorithm. Because of the underlying finiteness of
switching theory (as reflected by the fact that there
"always'' exist exhaustive algorithms for finding solu-~
tions), it is conceivable that switching theory can be
formulated in some manner which particularly faéilitates
proofs (and avoids most, if not all, questions of undecid-
ability). However, the proof of the existence, and the
finding of such a formulation, rests on further investi-
gation of the underlying calculi.

The a-object calculus, and the more general
calculi, also provide a means for providing a rigorous
formulation of the F-notation [R-W-2]. In particular,
these calculi can be employed to give rigorous semantics

to any particular F-notation. By combining the a-object
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calculus and the F-notation, one should be able to produce
a rigorous, convenient, and uniform language in which to
describe all the switching algorithms given in the refer -

ences of this paper.



66

REFERENCES

[R-1]

Roth, J.P., "Algebraic topological methods
for the synthesis of switching systems, I, "
Transactions of the American Mathematical

Society, Vol. 88, Na, 2. (July 1958) 301-326.

[R-W-1] Roth, J.P., and E.G. Wagner, '"Algebraic

[R-K]

[R-2]

topological methods for the synthesis of switching
systems, Part III, Minimization of nonsingular
Boolean trees, "' IBM Journal of Research and
Development, Vol. 4, No. 4 (October 1959) 326-344.

Roth, J.P., and R. M. Karp, '"Minimization
over Boolean graphs, ' IBM Journal of Research
and Development, Vol. 6, No. 2 (April 1962) 227-238.

Roth, J. P., "Diagnosis of automata failures:
A calculus and a method, "' IBM Journal of Research
and Development, Vol. 10, No. 4 (July 1966).

[R-Ww-2] Roth, J.P., and E.G. Wagner, "A calculus and

[s]

an algorithm for a logic minimization problem
together with an algorithmic notation, "' Chapter II
of this report.

Smullyan, R. M., "Theory of formal systems, "
Annals of Mathematics Studies Number 47, Princeton
University Press, Princeton, New Jersey (1961).




An APL Program for the Multiple Output
2-Level Minimization Problem

by

Leon S. Levy.

Research Division
Yorktown Heights, New York



TABLE OF CONTENTS

INTRODUCTION

. PROGRAM STRUCTURE

INTRCDUCTION TO USE

PROGRAMMER'S MANUAL

PROGRAM LISTING

PROGRAM DEVELOPMENT



1, INTRODUCTION

The APL/360 programs for the multiple-output two-level
minimization algorifhm are an initial version which serves
two purposes:
1) Use of the programs should ease the learning of the
algorithm since many examples are readily available;
a (trivial) program has been writtén to generate test
examples;
2) Having an operating program available, more efficient
versions may be prepared and test results validated,
The programs follow very closely the F-notation formulation
of the algorithm given in Reference 1. A brief description of
the algorithm follows:

The solution is built up recursively, Initlally, the prime cubes
are computed, and then an.'extrernal' program EBAR is called,
If there are any extremals, the 'distinguished' part of the
extremals is added to the solution and removed from the prime
cube list, Then the extremal program is reentered to find the
next order extremals (this is analogous to an onion-peeling
process), When no extremals are found, an arbitrary choice
is made in the branching program, BBAR, which then calls
EBAR to build up each of the two solutions, Multiple branching
can lead to a large solution tree, where EBAR and BBAR

are repeatedly called recursively,

[1] A Calculus and an Algorithm for a Logic Minimization
Together with an Algorithm Notation - J, Faul Roth,
E. G. Wagner,



The program contains, as modules, the identifiable sub-~
algorithms such as the "sharp-algorithm!' for computation of
the prime cubes, the extremal computation, and the cost
evaluations both in the less~than operation and in the branch
selection, Portions of the program may thus be changed to be
more efficient in speed or storage without revising the whole
program, and statistics on the relative performances easily
obtained, Also, the sub-algorithms are useable independent of
‘the overall algorithm,’

To facilitate the modular usage and revision of the algorithm a
brief programmer's manual is included in Section 4, The
syntax and semantics of each function in the program is

described, -

Section 2 describes the structure of the program, Section 3

provides an introduction to its use,

2, PROGRAM STRUCTURE

The program takes as input two singular covers, one covering
the care complex of the problem, and the other covering the
don't care complex, and proceeds to compute recursively the
minimum cost solution, The output is a singular cover repre-

senting the minimum solution,

A singular cube is represented in the program in one of three

forms:
a) As an alphameric vector of the form ‘'a_.,..a_|b. ...b !
1 m' 1 n
ai € O,l 1: X,CP
b,el, x

i



m = the number of input coordinates, n = tﬁe number of output
coordinates,

b) Asa lby(m +n +1)matrix q of the same components
(since the APL system distinguishes between an n-element
vector and a 1 x n element matrix),

c} As a null vector, in which case it identifies the empty cube,

The ''universal cube! has a, = x(all i) and bj = 1(all j), A
cube in which bj = x for all j is the empty cube, A singular
cover is a kx (m +n + 1) alphameric matrix, each of whose

rows represents a singular cube,

Examination of the F-notation formulation of the algorithm
shows that most functions can be written as functions of four

variables each of which is a singular cover.

C - a cover of the care complex
D - a cover of the don't care complex
S - the singular cover of the solution

Z - the set of prime cubes,

The APL language allows functions of 0,1, or 2 wvariables
so that it is necessary to group the variables, so that a func-
tion of four variables can be written as an apparent function

of only two variables, Because of this, and also because of
the way the APL interpreter treated local variables, the
following single variable array (*GA!' array) was developed
which contains within it the C, D, S, Z variables, The GA
array is a pby (m +n + 1) matrix in which four 'tag! rows;
IGAC! 1GAD?Y, 'GAS' and 'GAZ' are used as markers to
separate the variables, and where p is 4 plus the number of

singular cubes in C, D, S, Z ., The starting GA array is
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formed by an initialization function which accepts as

arguments the variables C, D of the problem,

The three main functions in the program are MXBAR, EBAR,
and BBAR in direct correspondence with the F-notation
formulation of the minimization algorithm., MXBAR accepts
as an argument the initial value of the GA array, and, if

S covers C, returns S as the result, Otherwise, if S does
not cover C, it computes the prime cubes using the SHARPALG
,fuﬁction, appends the set of prime cubes to the GA array,

and calls EBAR with the updated GA array as an argument,
Note that if part of the solution is known, the initial GA array
can be composed to include it (although the INITIAL function
does not provide fhis feature), in which case the solution might
converge more rapidly, Héwever, if such an initially intro-
duced solution contains terms which are not part of the mini-
mum solution, they wouldneverbe subsequently removed (either

by the program, or, correspondingly, by the F-algorithm, )

EBAR and BBAR are syn.tactically similar to MXBAR:
their input argument is a GA array and their output is a
singular cover, EBAR accepts the current GA array as
argument, and, if the ''solution' part of the GA array covers
the "care' part of the GA array, returns the solution part
as its value, (The OF function extracts a specified part of
the GA array as follows: Let A be the GA array then
GAC OF A will return the care part of the array., GAC 1is
the name of a tag vector which specified by the INITIAL

function, )



If the current solution is incomplete then tﬁe less than
operation is performed, using the XTX and XUX functions,
(The less than operationon A is A «—(XTX A)X UX A) and
the extremals of the remaining prime cubes are computed
using the EXT function. If the set of extremals computed is
non-empty, then EBAR is entered recursively with modified
argument, The modification performed by the DELTA func-
tion adds the distinguished vertices of the extremals to the

solution and removes them from the current extremals,

If the set of extremals computed in EBAR is empty, then the
branching process is initiated using the BBAR function with
the current GA array as argument, On entering the BBAR
function a selection of an output vertex is made by the user,
and the solutions with and without that output vertex are ex-
plored, and the lesser cost solution is chosen, The develop~
ment of the alternative solutions is made by generating updated
GA arrays for the alternative cholces and executing the EBAR
function for each, Of course, the EBAR function along either

path may branch again and BBAR can thus be called recursively,

Ultimately each path of the recursion tree must terminate,

since the algorithm always yields a solution,



3, INTRODUCTION TO USE

In this section, we assume that the reader has an APL
terminal available, and knows how to use the APL system,
Making use of the descriptions in Section 4, it is suggested
that the functions be tried out in the following order to gain
some familiarity with the program elements: XBX, XDX,
XEX, INTF, XIX, XJX, XKX, XMX, XSX, SHARP,
SHARPALG, CCAT, IN, MINUS, RESID, (The set of examples
given in Section 4 may also be used to verify proper opera-
tions, ) The functions in the program make use of a set of
global variables, which are initialized by the INITIAL function,
Referring to the description in Section 4, it may be seen that

(1 0)INITIAL 'XXX...X | XX...X'
m n

will set up the global variables for singular cubes with m
input coordinates and n output coordinates, Wherever the
dimensions of the singular cubes are to be changed, a new

INITIAL function should be executed,

If a random problem is desired, the function G-AGADTESTB
should be executed which will specify C as the initial GA
array, A, B, being specified according to their syntax as
described in Section 4. If a known problem is to be run, the
INITIAL function may be executed directly, As stated, this
function has C,D as arguments, If an initial value of S is
to be specified as well, then the CCAT function is used to add

it to the GA array,
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The program 1s then executed using MXBAR with the
generated GA array as argument, (Note that providing the
GA array directly, withouf use of the INITIAL function will
cause an error condition since certain global variables are

set up as side effects of the INITIAL function, )

In executing MXBAR, the progran'; will trace EBAR by
printing EBAR followed by its argument whenever EBAR is
entered, and similarly BBAR will be traced. This trace is
‘helpful in visualizing the recursive structure of the execution,

_The APL printout during execution is shown in the set of

examples in Section 4.

During the BBAR function execution, the program halts and
waits for the manual input of a two element numerlc vector.
The first number specifies which element of Z of the GA
array is to be selected and the second number selects the

vertex of the output part, Suppose Z is given by:

1x0|1x
11x |11
x11 |11

Then an input of 2 2 will select 11 x ] x 1 as the singular
cube to be added to the solution along the sB path of the
branching function, To facilitate usage, all of the functions
described in Section 4 have been combined as a function group
in APL, designated MOALG, The functions actually required
in the algorithm itself have also been grouped as MOALGI,

which does not include initialization, test case generation,



The less than operation was programmed according to an early
version of the algorithm and does not correspond to the final
formulation, The programmed versionis u<v if cost
(SU{U})E’_ cost(SU{v})and (u#(S)#v =0, The proper

formulation, given in [1] is:

If for every coface u' of u (including the case u' =u) there
exists a coface v! of v suchthat (u' # (D US))#v' = 0 and
¢ost (S U {V'})_<_ cost (S U{u'}). The costis evaluated in a
‘function called COST, which may be revised or rewritten to
conform to different technological factors., The programmed
version is described in Section 4 and examples are-given at
the end of that section; it envisions a two-level gating structure
and adds a unit cost for each input variable occurrence, and a
weighted sum of the first level outputs dépending on their

fanout to the second level gates,

4, PROGRAMMER'S MANUAL

In this section, the APL functions in the program are listed
alphabetically. Following each function, the syntax of the
function call and the result is described, Then a description

of the function is given,

Note that the syntax as described is restricted to the intended
use, and is not the broadest possible syntax for the given
functions, When a function is used with a broader syntax, the
semantics of the function is not necessariiy as described here,
As a trivial example, if the function INTF is executed, all
that is required syntactically by the program is that the

argument be commensurate cubes of length > S r T;



moreover, B is a global vector which can be ‘extended, by
concatentation to allow INTF to accept syntactically as its
first argument any commensurate alphameric vector satisfying
the length restriction noted above, without altering the syntax

or intended semantics of INTF,

A set of examples is given at the end of this section,

BBAR
Syntax: C «—~ BBAR A

A isa GA array

C 1is a singular cover
Semantics; BBAR is the branching algorithm, E(C, D, S, Z).
When BBAR is entered 'BBAR' followed by the GA array
is printed out .;:md input is requested from the user, The input
is a two component numerical vector, whose first component
denotes which singular cube of Z is to be chosen, and whose
second components selects the distinguished output of this
singular cube, Two GA arrays are now formed corresponding
to the two paths of the branch and EBAR is corﬁﬁuted for each
GA array., The costs of the computed singular covers along
the paths are compared and the solution of lesser cost is
chosen,
Explication: Local variable G corresponds to g, H to h,
and Q tof, N to s& and 0 to Sg—
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CCAT
Syntax: C— ACCATB
A is any matrix, or vector;
B is any matrix, or vector;
Either A or B is empty (10) or
A and B have tﬁe same number of columns,
C is A if B is empty
C is B if A is empty
C is a matrix - |
' Semantics: If A, B are matrices having the same number
of columns, A CCAT B is a matrix of the form [i.} . If

A or B is a vector it is considered as a matrix of one row,

COST _
Syntax: C+— A
A 1s a singular cover
C is a numeric scalar
Semantics: COST computes the cost of the solution part S

of A, First, interface any cubes of S that have the same
input (XAX function), Then the cost of each cube is computed
as the sum of its nonvacuous inputs added to a function of its
output components, The implemented function ché.i'ges a unit
cost for up to 3 output components, and two units of cost for
4-9 output components, Finally, the costs of all the cubes are

summed,
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DELTA
Syntax: C+— E DELTA A
A is a GA array
E is a singular cover
C isa GA array
Semantics: A is thé current GA array, and E is the

current set of extremais. The local variable G, correspond-
ing to f in the F-algorithm notation, covers the distinguished
‘vertices of the extremals to be added to the current solution,

I (cf. program listing, Section 5) covers the other vertices of
the extremals which are not added to the solution, C 1is the
updated GA array where the following operations have been
performed: C replaced by C#F, D replaced by DUSU F,

S replaced by SUF, and Z replacedby Z-EU(Efa F).

EBAR
Syntax: C — EBAR A
A isa GA array
C is a singular cover
Semantics: If S, the solution part of A, covers the

vertices of C, the care complex of A, then S is returned,
Otherwise, the less than operation on A is performed by
A «—(XTX A) SUX A, Then, if the resulting A has no ex-
tremals, BBAR is called to initiate the branching process.
Otherwise, the DELTA operation is performed to add to S
the distinguished vertices of the extremals, and EBAR is

applied to the resulting GA array.
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EXT
Syntax: C «— EXT A
A isa GA array
C is a singular cover
Semantics: EXT computes the extremals by the formula

EXT={zeZ|z# (SUDUZ-2)# 0},
by executing XAY with Z and S UD as arguments,

GACTEST
Syntax: C —~ AGACTEST B
A 1is a two component numeric vector
B is a number
C is a cover
Semantics: GACTEST is a random test generator which

generates a singular cover of B singular cubes (after sub-
suming) having m inputs and n outputs each where m is the -

first component of A and n is the second component of A,

GADTEST

Syntax: C —-AGADTEST B
A is a two component vector
B is a number
C is a GA-array
Semantics: GADTEST generates a test case, utilize

GACTEST, initializes the GA array and executes the multiple
output minimization algorithm, A [1] is the number of inputs,
A [2] is the number of outputs. B is the number of cubes in

the cover of the care complex,
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IN
Syntax: C~+AINB
A 1is a singular cube
B 1is a singular cover
C 1is a number
Semantics: If A isin B, C is the row number of A in

B, If A isnotin B, C is m+l, where m 1is the number of

rows in B,

INITIAL
Syntax: C -—A INITIAL B
A, B are singular covers
C is a GA-array
Semantics: A 1is a singular cover.for the complex of don't

cares, which may be empty., B 1is a cover for the complex of
cares, which must be non-empty, INITIAL forms the start-
ing GA array and sets up the global vectors GAC, GAD,
GAS, GAZ which are used as tags, the global scalars

D, L, M, S T, U, and the global vectors A, B, E, F, G, H,

(If there are no don't cares, 10 is entered for A.)

INTF
Syntax: C <A INTF B

A, B, C are singular cubes

Semantics: "C is the interface of A and B,
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MINUS
Syntax: C —A MINUS B
A, B, C are singular covers,
Semantics: C is A with the cubes of B deleted.
MXBAR
Syntax: C «MXBAR A
A is a GA-array
C 1is a singular cover,
Semantics: If S, the current solution, covers the vertices

of the care complex, then the result is given by S. Otherwise,
the set of prime cubes is computed as #alg (CUD) by the
SHARPALG function, and appended to the GA array, EBAR

is now applied to the resﬁlting GA array.

OF
Syntax: C+— AOFB
A 1s a label in GA
B is a GA-array
C is a cover
Semantics: C is the cover of singular cubes following the

label A up to, but not including, the next label,
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PF
Syntax: C—-APFB
A is the input part of a singular cube
B is a GA array
Cis 0 or 1 4
Semantics: C 1is a predicate, whichis 1 when A is the

input part of some cube in the solution part of B; otherwise

C is 0.

RESID
Syntax: C <—RESID A

A is a matrix

C 1is a matrix or an empty vector
Semantics: C is the result of deleting the top row of A,

If A is a vector or a matrix of one row, then C is empty,

SHARP
Syntax: C <A SHARP B
A, B, C are singular covers
Semantics: SHARP is a recursive function which forms

A # B, as follows: if A or B is empty, then C is given by
A, If B is a single singular cube, then A # B is computed
by the XSX function, If B 1is a cover consisting of more than
one singular cube, B = {Bl’ BZ’ ceoy Bn L
A#B=A#{B,B,,...,B }
=(a#B)#1{B,,...,B_}.
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SHARPALG
Syntax: C «— SHARPALG A
C, A are singular covers
Semantics: SHARPALG computes the prime cubes of A

where A is a cover of some singular cubical complex. First,
a universal singular cube B is fbrmed, all of whose input
components are 'x!, and all of whose output components are

11', Then C is givenby B#(B#A).

XAX
Syntax: C «—XAX A
A 1is a singular cover
C 1is a singular cover
Semantics: C is obtained from A by interfacing any

singular cubes which have the same input part, adding their

interface and deleting these particular cubes,

XAY
Syntax: C—~ AXAYB
. A, B, C are singular covers
Semantics: XAY is used in the extremal computation and

forms the singulé,r cover {acA| a#(BU (A-a)f 6}.
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XBX
Syntax: C+— AXBXB
A, B are commensurate cubes of
elements '0', "y, X
C is a cube of elements '0', 'l', 'x!, 1
Semantics: C 1is the interface of t@o non-void’cubes,

where corresponding inputs are interfaced according to the

following rule:

0 1 p
olo ¢ o
11d 1 1
x 0 1 x
XDX
Syntax: C «— AXDXB
A, B are commensurate cubes of '0', 'l', 'x!
C is a cube of '0!, '1', 'x!, FOU
Semantics: C is a cube whose elements are formed in

accordance with the following rule for element

composition:

XDX 1is used to form the output part of the SHARP product of

singular cubes,
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XEX
Syntax: C+—~ AXEXB
A, B cubes’
C is (nume&‘ié) 0 or 1
Semantics: C is'apredicate awhich is 1 if B is a
face of A, or B 1is equal to A,
0 otherwise,
XIX
: Syntax: C«~AXIX B

A, B ‘are cubes of '0', 1}, 'x!

C is a cover of cubes
Semantics: If A#B # 0, then C is A#B

If A#B = 0, then C is empty,
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XJX
Syntax: C-AXIX B
A, B are singular cubes
C 1is a cover (possibly empty)
Semantics: C is Af#B.
Let A = all a, A is a singular cube
Brx bllb2 where 2, is the input part
E = a2$ﬁfb2 a, is the output part

defines i(

1. all—l b_1 = 0, then C is equalto A, (Line [9] branches
to line [197.
2, (a1 [bl) or (a.1 = bl)’ then
i) E isall x's C 1is empty
ii) E isnotall x's C is allE.
(Line [10) branches to line [21] which terminates in case (i)
or continues to line T[22)} in case (ii),

3. bl C a then

’
1 i) C 1includes aIIE, if E is not all x's, and
ii}) C includes a term for each input that has an
x in A anda 0, or 1 in B,
(Line [12] forms (1), or line [11] branches around it, as
appropriate, Lines [13-16] form part (ii). Line 17

restructures C,)
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XKX
Syntax: C+—~ AXKXB
A, B are singular cubes
C is (numeric) 0 or 1
Semantics: C is a predicate whichis 1 iff B properly
contains A or B = A,
Let A =alb
B = c| d

Then B properly contains A iff
(cCa and (b _]d or b=4d))
or
(d=a and b jd).
If AXKX B =1, then in the subsuming function XMX, A

may be subsumed by B,

XMX
Syntax: C — XMX A
A is a singular cover
C 1is a singular cover
Semantics: XMX performs the subsuming operation on A,
Expliéation: Each singular cube in A is compared with each

other cube by a "double DO-loop". J indexes the outer loop, I
indexes the inner loop, As the solution is being built up, the Jth
cube of A is compared with successive cubes of C, (line [6]).
If A [T;] is containedin C[I;], then I is reset and J is

increased (line [9 ]. If not, then if C [I;] is replaced by A[J;]
(line [77], then C[I;] is replaced by A[J;], line [10] and I is

reset and J is increased,
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If neither C [I;] contains A [J;], or vice versa, I is
increased until C is exhausted, at which time A[J;] is added

to C, J is increased and 1 reset,

XNX
Syntax: C — XNX A
A is a vector or matrix
C is a matrix
.Semantics: If A is a matrix then C is givenby A, If

A 1is a vector, then C 1s a restructured into a single row

matrix,
XQX
Syntax: C — XOX A
A 18 a vector or matrix
C 1is (numeric) 0 or 1
Semantics: C is a predicate whichis 1 if x is a vector

or a matrix with one row,

XsX .
Syntax: C+— A XSX B

A is a non-empty singular cover
is a non-empty singulé.r cube
is a singular cover

is A#B

a a u

Semantics:
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Explication: In this recursive computation of A#B, where
B 1is a singular cube, and_ A 1is a singular cover, A is
checked first to see if it contains exactly one cube, (line [2]),
in which case the sharp product is computed by XIX (line [7]).
Otherwise, letting A = {al;’az, cess am } = {él, A1 } where
ajpees,a ave the singular cubes of A and ‘Al is A with
a, removed; A#B = (al#B) u (A1 #B) is given by lines 3-6.

XTX

Syntax: C—XTX A
A is a GA-array
C isa (numeric) matrix
Semantics: C is a nx! matrix where n is the number of
cubes in Z.C[i;1] is the .cos\t of Zi’ the ith singular cube
of Z, The cost function used is as follows:

Let Zi = al b
If a is the input part of some singular cube in S then the
cost of a is 0, Otherwise, the cost of a is the number of
nonvacuous inputs, The cost of b is a function of the number
of output coordinates k that have the assignment 1, namely:

' cost b=1 k=1,2,3

=2 k=45,6,7,8,9

Explication: The cost function of the number of outputs is
glven by B inline [3].
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XUX

Syntax: C+— ZXUXB
A is a (numeric) (m x 1) matrix where m
is the number of singular cubes in the Z
component of B, B isa GA a.:t"ra.y, whose
Z-component has at least two singular cubes,
C is a GA array.

Semantics: The first argument is XTX B which specifies

-the incremental cost for each singular cube of Z,

XUX
Semantics: A 1is a singular cover, consisting of two

singular cubes, A = {a_, 2, }, and B is a singular cover, In

1
the 'less than' operation, B is the '"don't care'! singular

cover, C is a predicate which 1 iff (a1 #B)#a2 is empty;
i.e. that a., covers all vertices of a, which are not in the

2 1
don't care complex.

XVX '
Syntax: C-—AXVX B
A is a set of two singular cubes
B is a set of singular cubes
C is a (numeric) 0 or 1
Semantics: Let A = {al, az}. C is a predicate which

is 1 if (a.1 #B) # a, = ‘) (XVX 1is used in the 'less than'

computation),
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XWX
Syntax: C XWX A

A 1s a non-empty singular cover

C 1is a cube of elements 'l 'x!
Semantics: C is the interface of the output parts of all

the singular cubes of A,

Examples

The following set of examples shows the operation of the
various functions within the program as well as the overall
program operation, The examples are intended to be self-

explanatoryl and all variables used are defined.
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5. PROGRAM LISTING

The APL printout of the function definitions for all of the
programs in the M, O, Algorithm are listed below,

_Example 1. This example is taken from Appendix{ of
Reference [1]. The initial problem so consists of six care
conditions, listed under GA C, no don-t-care conditions, so
that a blank follows GA D, no initial solution GA S and no
prime cubes GA Z initially specified, A minimum cover S1

for this problem is found invoking the function MXBAR, by the

statement

Sl -— MXBAR S0

As described above and in [1] EBAR is executed, first compu-
ting the preim cubes Z to form the new GA Z array
(GAC, GAD, and GA S remain the same,

Extremals are computed, whose results are exhibited prior to
the next execution of EBAR: here the new GA array shows a
new GAC, GA D, GAS and GA Z, In this second execution
of EBAR no new extremals are formed, so that the branching
function BBAR is called: Below BBAR is listed the same GA
array as shown at the second execution of EBAR, The program
allows the user a choice of singular cube and its distinguished
face from the GA C array: here the choice 11 is made, to

choose the second cube and first coordinate,

EBAR is then executed as a function called in BBAR and a new
set of extremals computed, No further choices are made:

EBAR is executed four more times in the execution of the
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branching part of the algorithm, Finally, in the last array
following S1, the final minimum is obtained.,

Example 2, A2

GAC_ .

000%X11 |x1
00¥1X11111
0X11X11 (11
011%¥X1111X
000X0X1 X1
00X10%X1 |11
0X110%X11]11
011%X0X11114
000%00X |11
00X100X|11
0X1100%X |11
011X00%X |11
X110000|11

GAD
GAS
GAZ

Here A2 is listed a GA array labelled A2 which is used in

subsequent examples,

Example 3, Illustrates the .structure of branching for the prob-
lem of Example 1: when the choice 21 is made, effectively,
EBAR is executed twic;e, 21 designates cube 1x0 llx as the
cube on which to branch, The column on the lower left corres-
ponds to finding a solution which includes™ this cube in the
solution, the column on the lower right is a computation of a
solution which does not inciude it, (The final solution takes

the one of the two of lower cost,)

Example 4, Consists of various examples of execution of

several functions, such as SO SHARP S2, etc, .
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6. DEVELOPMENT OF THE PROGRAM

The programs for the multiple output two level minimization
algorithm were written by the author during the summer of
1968. At the beginning of the summer, the author had no
familiarity with the single outI-)ut minimization algorithm, did
not know APL, and had available a rough draft version of the

algorithm in its F-notation formulation,

Among the factors contributing to the completion of thepro-

gram were:

1) The use of an interactive computing terminal system,
APL\360, The factor which the APL language itself contributed
is hard to measure, but it is the author's feeling that it would
not take appreciably longei' in the assembly language, assum-
ing that an inte.ra.ctive. assembly language processor were at
the same operational ievel as the APL interpreter, However,
the fact that it is written in APL should make it more accessi-

ble to users,

2) The F-notation formulation, and the many clarifying con-
versations with Dr, J. FP. Roth, developer of the algorithm,
Once understood, this formulation provides a gestalt view of

the algorithm,

3) The decision to model the program ailong the lines of the
F-notation formulation, and to place first priority on complet-
ing the program and its documentation, at the possible cost of
performance., This decision appeared to be justified, since the
program was successfully run about a month before the end of

the summer and a fairly extensive revision was made increasing
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the performance by roughly a factor of 5,

The increases in efficiency were achieved by writing sub-

routines as array operations within a single statement,

Interfacing two cubes (XBX function) is a very straightforward
application of this technique, where the 'array operations in
APL are used as loop control, A more interesting iliustra—
tion is the sharp product of two cubes (XIX function) where the
initial program containing nested loop and subroutine calls has

been combined within a single statement,

‘The use of single statements to loop increases the efficiency of
program storage and execution time, but requires somewhat
increased storage at run time, It is most worthwhile for the
key operations such as shafping, and subsuming and the next

candidate functions should be: XJX, XSX, SHARP , and XMX.
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